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Abstract

The R package CausalQueries can be used to make, update, and query causal models
defined on binary nodes. Users provide a causal statement of the form X -> M <- Y;
M <-> Y which is interpreted as a structural causal model over a collection of binary
nodes. Then CausalQueries allows users to (1) identify the set of principal strata—
causal types—required to characterize all possible causal relations between nodes that
are consistent with the causal statement (2) determine a set of parameters needed to
characterize distributions over these causal types (3) update beliefs over distributions of
causal types, using a stan model plus data, and (4) pose a wide range of causal queries
of the model, using either the prior distribution, the posterior distribution, or a user-
specified candidate vector of parameters.
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1. Introduction: Causal models

CausalQueries is an R package that lets users make, update, and query causal models.
Users provide a structural causal model in the form of a statement that reports a set of
binary variables and the relations of causal ancestry between them. There are three primary
functions. The first, make_model(), takes a causal statement and generates a parameter
vector that fully describes a probability distribution over all possible types of causal relations
between variables (“causal types”). Given a prior distribution over parameters—equivalently,
over causal models consistent with the structural model— and data on some or all nodes, the
second primary function, update_model(), deploys a Stan (Carpenter, Gelman, Hoffman, Lee,
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Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell 2017) model to generate a posterior
distribution over causal models. The third primary function query_model() can then be
used to ask a wide range of causal queries, using either the prior distribution, the posterior
distribution, or a user-specified candidate vector of parameters.

In the next section we provide a motivating example that uses the three primary functions
together. We then describe how the package relates to existing available software. Section 4
gives an overview of the statistical model behind the package. Section 6, Section 7, and
Section 8 then describe, in turn, the functionality for making, updating, and querying causal
models. We provide further computation details in the final section.

2. Motivating example

Before providing details on package functionality, we give an example of an application of
the three primary functions, showing how to use CausalQueries to replicate the analysis in
(Chickering and Pearl 1996; see also Humphreys and Jacobs 2023).

Chickering and Pearl (1996) seek to draw inferences on causal effects in the presence of
imperfect compliance. We have access to an instrument 𝑍 (a randomly assigned prescription
for cholesterol medication), which is a cause of 𝑋 (treatment uptake) but otherwise unrelated
to 𝑌 (cholesterol). We imagine we are interested in three specific queries. The first is the
average causal effect of 𝑋 on 𝑌 . The second is the average effect for units for which 𝑋 = 0
and 𝑌 = 0; this “probability of causation” query asks whether untreated individuals with bad
outcomes did poorly because they were untreated. The last is the average effect for “compliers”:
units for which 𝑋 responds positively to 𝑍. Thus two of these queries are conditional queries,
with one conditional on a counterfactual quantity.

The data on 𝑍, 𝑋, and 𝑌 is given in Chickering and Pearl (1996) and is also included in the
CausalQueries package. The data looks as follows:

R> data("lipids_data")
R>
R> lipids_data

#> event strategy count
#> 1 Z0X0Y0 ZXY 158
#> 2 Z1X0Y0 ZXY 52
#> 3 Z0X1Y0 ZXY 0
#> 4 Z1X1Y0 ZXY 23
#> 5 Z0X0Y1 ZXY 14
#> 6 Z1X0Y1 ZXY 12
#> 7 Z0X1Y1 ZXY 0
#> 8 Z1X1Y1 ZXY 78

This data is reported in “compact form,” meaning it records the number of units (“count”)
that display each possible pattern of outcomes on 𝑍, 𝑋, and 𝑌 (“event”).

The strategy to analyse this data involves three steps:

• Step 1: generate a model with make_model, yielding an object of class causal_model
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• Step 2: update the model with update_model, again yielding an object of class
causal_model

• Step 3: pose queries of the model with query_model, yielding an object of class
model_query

Users generate the stipulated causal model using CausalQueries as follows:

R> lipids_model <- make_model("Z -> X -> Y; X <-> Y")

The result is an object of class causal_model, with associated print, summary, and plot
methods. By default, uniform priors are placed on model parameters.

Users can then update beliefs over model parameters by supplying data as follows:

R> lipids_model <- update_model(lipids_model, lipids_data)

The updated model is also an object of class causal_model, though now also containing a
posterior distribution over model parameters.

Finally, users can query the model. For instance, the three previously mentioned queries,
which vary in the type of conditioning imposed, can be formulated as follows:

R> lipids_queries <-
+ query_model(
+ lipids_model,
+ queries = list(
+ ATE = "Y[X=1] - Y[X=0]",
+ PoC = "Y[X=1] - Y[X=0] :|: X==0 & Y==0",
+ LATE = "Y[X=1] - Y[X=0] :|: X[Z=1] > X[Z=0]"),
+ using = "posteriors"
+ )

The output is an object of class model_query, with associated print, summary, and plot
methods.

The model_query object is a data frame containing estimates, and, when available, prior or
posterior standard deviations, and credibility intervals.

Table 1 presents the results from the analysis of the lipids data.1 Rows 1 and 2 in the table
replicate the results from Chickering and Pearl (1996), while row 3 provides inferences for the
local (complier) average treatment effects (“LATE”).

Table 1: Replication of Chickering and Pearl (1996).

label query given mean sd cred.low cred.high
ATE Y[X=1] - Y[X=0] - 0.55 0.10 0.37 0.73
PoC Y[X=1] - Y[X=0] X==0 & Y==0 0.63 0.15 0.38 0.89

LATE Y[X=1] - Y[X=0] X[Z=1] > X[Z=0] 0.70 0.05 0.59 0.80

1Note that the “using” column is omitted to simplify output, as all estimands are derived from the posterior
distribution.
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For visual presentation of the results, output can also be plotted:

R> lipids_queries |> plot()

Causal Queries
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Figure 1: Illustration of queries plotted

These core functions can be combined in a single pipeline as follows:

R> make_model("Z -> X -> Y; X <-> Y") |>
+ update_model(lipids_data) |>
+ query_model(
+ queries = list(
+ ATE = "Y[X=1] - Y[X=0]",
+ PoC = "Y[X=1] - Y[X=0] :|: X==0 & Y==0",
+ LATE = "Y[X=1] - Y[X=0] :|: X[Z=1] > X[Z=0]"),
+ using = "posteriors") |>
+ plot()

As we describe below, the same basic procedure of making, updating, and querying models,
can be used (up to computational constraints) for arbitrary causal models, for different types
of data structures, and for all causal queries that can be posed of the causal model.

3. Connections to existing packages

The field of causal inference encompasses a wide range of software tools used across various
disciplines, including social sciences, natural sciences, computer science, and applied mathe-
matics. This section focuses on the role and capabilities of CausalQueries within the specific
area of evaluating causal queries on models represented as directed acyclic graphs (DAGs)
or structural equation models (SEMs). Table 2 provides a summary of relevant software,
highlighting their connections, strengths, and limitations in comparison to CausalQueries.
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Table 2: Related software.

Software Source Language Availability Scope
causalnex Beaumont,

Horsburgh,
Pilgerstorfer,
Droth,
Oentaryo, Ler,
Nguyen,
Ferreira, Patel,
and Leong
(2021)

Python • pip • causal structure
learning

• querying marginal
distributions

• discrete data

pclag Kalisch,
Mächler,
Colombo,
Maathuis, and
Bühlmann
(2012)

R • CRAN
• GitHub

• causal structure
learning

• ATEs under linear
conditional
expectations, no hidden
selection

DoWhy Sharma and
Kiciman (2020)

Python • pip • identification
• average and conditional

causal effects
• robustness checks

autobounds Duarte,
Finkelstein,
Knox,
Mummolo, and
Shpitser (2023)

Python • Docker
• GitHub

• bounding causal effects
• partial identification
• DAG canonicalization
• binary data

causaloptim Sachs, Jonzon,
Sjölander, and
Gabriel (2023)

R • CRAN
• GitHub

• bounding causal effects
• non-identified queries
• binary data

causalnex is comprehensive software that offers functions for discovering and querying causal
models. Like CausalQueries, it uses Bayesian methods and supports “do calculus” (Pearl
2009). It focuses on conditional probability distribution tables instead of principal strata
(causal types). This limits the types of queries and expert information that can be incor-
porated. For example, knowing conditional probability distributions is not enough to make
claims about (or provide priors with respect to) effect monotonicity, complier effects, or the
“probability of causation” (Dawid, Musio, and Murtas 2017). However, it allows for efficient
handling of simple queries with larger models.

Similar to causalnex, pclag emphasizes learning about causal structures and uses the result-
ing DAGs to recover average treatment effects (ATEs) across all learned Markov-equivalent
classes from observed data that satisfy linearity of conditional expectations. This approach
is also more restrictive than CausalQueries in terms of the queries it allows.

DoWhy is a feature-rich framework focusing on causal identification, effect estimation, and
assumption validation. With a user-specified DAG, it uses do-calculus to find expressions
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that identify desired causal effects through Back-door, Front-door, IV, and mediation criteria,
and then uses standard estimators to estimate the desired effect. After estimation, DoWhy
deploys a comprehensive refutation engine with a large set of robustness tests. While this
approach efficiently handles varied data types on large causal models, not parameterizing the
DAG itself limits the types of queries that can be posed.

The packages most similar to CausalQueries for model definition are autobounds and
causaloptim. They deal with discrete causal models, and their definitions of principal strata
(causal types) and causal relations on the DAG are very similar to those of CausalQueries.
Differences arise in how disturbance terms and confounding are defined: implicitly by
the causal statement in CausalQueries versus explicitly via separate disturbance nodes
in autobounds and causaloptim. While CausalQueries assumes a canonical form for
input DAGs, autobounds and causaloptim facilitate canonicalization. The main difference
between the methods is in their approach to evaluating queries.

Both autobounds and causaloptim build on seminal approaches in Balke and Pearl (1997)
to construct bounds on queries, using constrained polynomial and linear optimization, respec-
tively. In contrast, CausalQueries uses Bayesian inference to generate a posterior over the
causal model, which is then queried (consistent with Chickering and Pearl 1996; Zhang, Tian,
and Bareinboim 2022). A key difference is the target of inference. The polynomial and linear
programming approach is suited to handling larger causal models. However, due to their
similar model parameterization, autobounds, causaloptim, and CausalQueries face similar
constraints as parameter spaces expand rapidly with model size. The Bayesian approach to
model updating and querying is more efficient because a model can be updated once and
queried multiple times, while expensive optimization runs are needed for each separate query
in autobounds and causaloptim.

In summary, the main strength of CausalQueries is its ability to let users define arbitrary
DAG and pose any queries on it, using a canonical procedure to form Bayesian posteriors
for those queries, regardless of whether they are identified. For instance, if researchers want
to learn about the local average treatment effect and their model meets the conditions in
Angrist, Imbens, and Rubin (1996), updating will recover valid estimates as data grows, even
if researchers are unaware that the local average treatment effect is identified or unfamiliar
with the specific estimation method proposed by Angrist et al. (1996).

There are two main limitations of the models that CausalQueries can handle. First,
CausalQueries is designed for models with a relatively small number of binary nodes. Since
it does not limit the range of possible causal relationships in a model, the parameter space
expands quickly with the model’s complexity. This complexity growth depends on the causal
structure and increases rapidly with the number of parents influencing a child node. A chain
model like 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐸 has only 18 parameters (21 + 4 × 22), while a model
in which 𝐴, 𝐵, 𝐶, 𝐷 are all direct ancestors of 𝐸 has 65, 544 parameters (4 × 21 + 2(42)).
Switching from binary to nonbinary nodes has similar effects. The restriction to binary
nodes is for computational, not conceptual, reasons.2

2For more on computational constraints and strategies for updating and querying large models, see the
CausalQueriesTools package available via devtools::install_github("till-tietz/CausalQueriesTools").
The main approach here is to divide large causal models into modules, update each module, and then reassemble
them to pose queries. Also, see section 9.4.1 of Humphreys and Jacobs (2023) for a method that represents
non-binary data as a profile of outcomes on multiple binary nodes.
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Second, the package is designed for learning about populations from independently sampled
units. Therefore, it does not inherently address issues of clustering, hierarchical structures,
or purposive sampling. However, the broader framework can be adapted for these purposes
(see section 9.4 of Humphreys and Jacobs 2023). The targets of inference are case-level or
population-level quantities; CausalQueries is not well-suited for estimating sample quanti-
ties.

4. Statistical model

The core conceptual framework used by CausalQueries is that described in Pearl’s Causality
(Pearl 2009). It can be summarized as follows (using notation from Humphreys and Jacobs
2023):

Definition 1 A “causal model” is:

1. an ordered collection of “endogenous nodes” 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑛}
2. an ordered collection of “exogenous nodes” Θ = {𝜃𝑌1 , 𝜃𝑌2 , … , 𝜃𝑌𝑛}
3. a collection of functions 𝐹 = {𝑓𝑌1

, 𝑓𝑌2
, … , 𝑓𝑌𝑛

} with 𝑓𝑌𝑗
specifying, for each 𝑗, how

outcome 𝑌𝑗 depends on 𝜃𝑗 and realizations of endogenous nodes prior to 𝑌𝑗.

4. a probability distribution, 𝜆, over Θ.

By default, CausalQueries assumes that endogenous nodes are binary. When defining a
causal structure, we specify which endogenous nodes are (possible) direct causes of a node,
𝑌𝑗, given the other nodes in the model. These nodes are referred to as the parents of 𝑌𝑗,
denoted as 𝑃 𝐴𝑗 (where uppercase 𝑃𝐴𝑗 represents the collection of nodes, and lowercase 𝑝𝑎𝑗
represents a specific set of values these nodes might assume). With discrete-valued nodes, it
is possible to identify all potential responses of a node to its parents, which we call “nodal
types.” If a node 𝑖 can take on 𝑘𝑖 possible values, then the set of possible values that the
parents of 𝑗 can assume is 𝑚𝑗 ∶= ∏𝑖∈𝑃𝐴𝑗

𝑘𝑖. Consequently, there are 𝑘𝑚𝑗
𝑗 different ways that

node 𝑗 might respond to its parents. For binary nodes, this simplifies to 2(2|𝑃𝐴𝑗|). Thus, an
endogenous node with no parents has 2 nodal types; a binary node with one binary parent
has four types; and a binary node with two parents has 16 types, and so forth.

The complete set of possible causal reactions of a given unit to all possible values of its parents
is represented by its collection of nodal types at each node. We refer to this collection as a
unit’s “causal type,” denoted as 𝜃. These causal types correspond to the principal strata,
which are familiar from the study of instrumental variables (Frangakis and Rubin 2002).

The approach used by CausalQueries is to align the domain of exogenous nodes 𝜃𝑌𝑗 with
the number of nodal types for 𝑌𝑗. The function 𝑓𝑗 then determines the value of 𝑦 by simply
reporting the value of 𝑌𝑗 implied by the nodal type and the values of the parents of 𝑌𝑗.
Therefore, if 𝜃𝑗

𝑝𝑎𝑗 is the value for 𝑗 when parents have values 𝑝𝑎𝑗, then 𝑓𝑌𝑗
(𝜃𝑗, 𝑝𝑎𝑗) = 𝜃𝑗

𝑝𝑎𝑗 .
Practically, this means that, given the causal structure, learning about the model reduces to
learning about the distribution, 𝜆, over the nodal types.

In scenarios without unobserved confounding, we assume that the probability distributions
over the nodal types for different nodes are independent: 𝜃𝑖 ⟂⟂ 𝜃𝑗, 𝑖 ≠ 𝑗. In this case, we use a
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categorical distribution to specify 𝜆𝑗
𝑥 ∶= Pr(𝜃𝑗 = 𝜃𝑗

𝑥). From this independence, the probability
of a given causal type 𝜃𝑥 is ∏𝑛

𝑖=1 𝜆𝑖
𝑥. For example, Pr(𝜃 = (𝜃𝑋

1 , 𝜃𝑌
01)) = Pr(𝜃𝑋 = 𝜃𝑋

1 ) Pr(𝜃𝑌 =
𝜃𝑌

01) = 𝜆𝑋
1 𝜆𝑌

01. In cases where confounding is present, the logic remains the same, but we need
to specify enough parameters to capture the joint distribution over nodal types for different
nodes.

For instance, in the Lipids model, the joint distribution of nodal types can be simplified as
shown in Equation 1.

Pr(𝜃𝑍 = 𝜃𝑍
1 , 𝜃𝑋 = 𝜃𝑋

10, 𝜃𝑌 = 𝜃𝑌
11) = Pr(𝜃𝑍 = 𝜃𝑍

1 ) Pr(𝜃𝑋 = 𝜃𝑋
10) Pr(𝜃𝑌 = 𝜃𝑌

11|𝜃𝑋 = 𝜃𝑋
10) (1)

And so, for this model, 𝜆 would include parameters that represent Pr(𝜃𝑍) and Pr(𝜃𝑋) but
also the conditional probability Pr(𝜃𝑌 |𝜃𝑋):

Pr(𝜃𝑍 = 𝜃𝑍
1 , 𝜃𝑋 = 𝜃𝑋

10, 𝜃𝑌 = 𝜃𝑌
11) = 𝜆𝑍

1 𝜆𝑋
10𝜆𝑌 |𝜃𝑋

10
11 (2)

Representing beliefs over causal models thus requires specifying a probability distribution
over 𝜆. This distribution might be degenerate if users wish to specify a particular model.
CausalQueries also allows users to specify parameters, 𝛼, of a Dirichlet distribution over 𝜆𝑗

for each node 𝑌 𝑗 (and similarly for conditional distributions in cases of confounding). If all
entries of 𝛼 are 0.5, this corresponds to Jeffreys priors. By default, CausalQueries assumes
a uniform distribution, meaning all nodal types are equally likely, which corresponds to 𝛼
being a vector of 1’s.3

Updating is then done with respect to beliefs over 𝜆. In the Bayesian approach we have:

𝑝(𝜆|𝐷) = 𝑝(𝐷|𝜆)𝑝(𝜆)
∫𝜆′ 𝑝(𝐷|𝜆′)𝑝(𝜆′)

where 𝑝(𝐷|𝜆′) is calculated under the assumption that units are exchangeable and inde-
pendently drawn. In practice this means that the probability that two units have causal
types 𝜃𝑖 and 𝜃𝑗 is simply 𝜆′

𝑖𝜆′
𝑗. Since a causal type fully determines an outcome vector

𝑑 = {𝑦1, 𝑦2, … , 𝑦𝑛}, the probability of a given outcome (“event”), 𝑤𝑑, is given simply by
the probability that the causal type is among those that yield outcome 𝑑. Thus, from 𝜆 we
can calculate a vector of event probabilities, 𝑤(𝜆), for each vector of outcomes, and under
independence, we have:

𝐷 ∼ Multinomial(𝑤(𝜆), 𝑁)

Thus for instance in the case of an 𝑋 → 𝑌 model, and letting 𝑤𝑥𝑦 denote the probability of
a data type 𝑋 = 𝑥, 𝑌 = 𝑦, the event probabilities are:

3While flexible, using the Dirichlet distribution does constrain the types of priors that can be represented;
see Irons and Cinelli (2023) for a discussion of these constraints and an approach to incorporating richer priors
using multiple Beta distributions.
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𝑤(𝜆) =
⎧{{
⎨{{⎩

𝑤00 = 𝜆𝑋
0 (𝜆𝑌

00 + 𝜆𝑌
01)

𝑤01 = 𝜆𝑋
0 (𝜆𝑌

11 + 𝜆𝑌
10)

𝑤10 = 𝜆𝑋
1 (𝜆𝑌

00 + 𝜆𝑌
10)

𝑤11 = 𝜆𝑋
1 (𝜆𝑌

11 + 𝜆𝑌
01)

For a more complex example, Table 3 illustrates key values for the Lipids model. We see here
that we have two types for the exogenous node 𝑍, four for 𝑋 (representing the strata familiar
from instrumental variables analysis: never takers, always takers, defiers, and compliers) and
four for 𝑌 . For 𝑍 and 𝑋 we have parameters corresponding to probability of these nodal
types. For instance Z.0 is the probability that 𝑍 = 0. Z.1 is the complementary probability
that 𝑍 = 1. Things are a little more complicated for distributions on nodal types for 𝑌
however: because of confounding between 𝑋 and 𝑌 we have parameters that capture the
conditional probability of the nodal types for 𝑌 given the nodal types for 𝑋. We see there
are four sets of these parameters. The next to final column shows a sample set of parameter
values. Together, the parameters describe a full joint probability distribution over types for
𝑍, 𝑋 and 𝑌 that is faithful to the graph.

Table 3: Nodal types and parameters for Lipids model.

node nodal_type param_set param_names param_value priors
Z 0 Z Z.0 0.84 1
Z 1 Z Z.1 0.16 1
X 00 X X.00 0.12 1
X 10 X X.10 0.08 1
X 01 X X.01 0.11 1
X 11 X X.11 0.69 1
Y 00 Y.X.00 Y.00_X.00 0.38 1
Y 10 Y.X.00 Y.10_X.00 0.00 1
Y 01 Y.X.00 Y.01_X.00 0.20 1
Y 11 Y.X.00 Y.11_X.00 0.42 1
Y 00 Y.X.01 Y.00_X.01 0.40 1
Y 10 Y.X.01 Y.10_X.01 0.38 1
Y 01 Y.X.01 Y.01_X.01 0.06 1
Y 11 Y.X.01 Y.11_X.01 0.16 1
Y 00 Y.X.10 Y.00_X.10 0.71 1
Y 10 Y.X.10 Y.10_X.10 0.15 1
Y 01 Y.X.10 Y.01_X.10 0.05 1
Y 11 Y.X.10 Y.11_X.10 0.09 1
Y 00 Y.X.11 Y.00_X.11 0.65 1
Y 10 Y.X.11 Y.10_X.11 0.04 1
Y 01 Y.X.11 Y.01_X.11 0.01 1
Y 11 Y.X.11 Y.11_X.11 0.30 1

These parameters again imply a probability distribution over data types. For instance the
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probability of data type 𝑍 = 0, 𝑋 = 0, 𝑌 = 0 is:

𝑤000 = Pr(𝑍 = 0, 𝑋 = 0, 𝑌 = 0) = 𝜆𝑍
0 𝜆𝑋

00(𝜆𝑌 |𝜆𝑋
00

00 + 𝜆𝑌 |𝜆𝑋
00

01 ) + 𝜆𝑍
0 𝜆𝑋

01(𝜆𝑌 |𝜆𝑋
01

00 + 𝜆𝑌 |𝜆𝑋
01

01 )

The value of the CausalQueries package is that it enables users to specify arbitrary models
of this form, determine all the implied nodal and causal types, and update these models
using given priors and data. This is achieved by calculating event probabilities based on
all possible parameter vectors and subsequently the likelihood of the data given the model.
Additionally, the package allows users to pose arbitrary queries on a model to evaluate the
values of estimands of interest, which are functions of the values or counterfactual values of
nodes, conditional on the values or counterfactual values of nodes.

The following sections review the classes and methods used by CausalQueries and the key
functionalities for making, updating, and querying causal models.

5. Classes and Methods

CausalQueries makes use of two types of object classes, causal_model and model_query.

An object of class causal_model encodes a structural causal model and stores information
on parameter values—either provided by the user or set to defaults—as well as prior or
posterior distributions over model parameters. An object of class causal_model is generated
using make_model() and can be adjusted using update_model() as well as a set of helper
functions: set_confound, set_restrictions, set_priors, as describe in sections Section 6
and Section 7 below. Methods print, summary and plot are available for an object of class
causal_model.

An object of class model_query records responses to queries posed of a causal model. Depend-
ing on the nature of the query, it can include estimates of effects, prior or posterior standard
deviations, and confidence intervals. An object of class causal_model is generated using
query_model as described in Section 8. Methods print, summary and plot are available for
an object of class model_query.

6. Making models

A model can be defined in a single step in CausalQueries by supplying a causal statement—
expressed using dagitty-style syntax (Textor, van der Zander, Gilthorpe, Liśkiewicz, and
Ellison 2016)— to make_model. This generates an object of class causal_model (see Sec-
tion 5).

To illustrate, a model where 𝑋 causes both 𝑀 and 𝑌 , and 𝑀 also causes 𝑌 , can be created
as follows:

R> model <- make_model("X -> M -> Y <- X")

The statement provides the names of nodes as well as arrows (“->” or “<-”) connecting nodes
and indicating whether one node is a potential cause of another, i.e., whether a given node is
a “parent” or “child” of another. Formally, a statement like this is interpreted as:
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1. Functional equations:

• 𝑌 = 𝑓𝑌 (𝑀, 𝑋, 𝜃𝑌 )
• 𝑀 = 𝑓𝑀(𝑋, 𝜃𝑀)
• 𝑋 = 𝑓𝑋(𝜃𝑋)

2. Distributions on Θ:

• Pr(𝜃𝑖 = 𝜃𝑖
𝑘) = 𝜆𝑖

𝑘

3. Independence assumptions:

• 𝜃𝑖 ⟂⟂ 𝜃𝑗, 𝑖 ≠ 𝑗
In addition, as we did in the Chickering and Pearl (1996) example, it is possible to use
two-headed arrows (“<->”) to indicate “unobserved confounding,” that is, the presence of
an unobserved variable that might influence two or more observed variables. In this case,
condition 3 above is relaxed, and the exogenous nodes associated with confounded variables
have a joint distribution. We describe how this is done in greater detail in Section 6.3.1.

6.1. Graphing

Plotting the model can help users verify that they have correctly defined its structure.
CausalQueries offers straightforward graphing tools that utilize features from the ggplot2
and ggdag packages. Once a model is defined, it can be graphed by calling the plot()
method on objects of class causal_model. This method is a wrapper for the plot_model()
function and accepts additional options, which are detailed in ?plot_model.

Figure 2 shows figures generated by plotting lipids_model with and without options. The
plots have class c("gg", "ggplot") and so will accept any additional layers available for the
objects of class ggplot.

R> lipids_model |> plot()
R>
R> lipids_model |>
+ plot(x_coord = 1:3,
+ y_coord = 3:1,
+ textcol = "black",
+ textsize = 3,
+ shape = c(15, 16, 16),
+ nodecol = "lightgrey",
+ nodesize = 10)

6.2. Model inspection

When a model is defined, CausalQueries generates a set of internal objects used for all
inferential tasks. These include default parameter values, default priors, and matrices that
map parameters to causal types and causal types to data types. Although users generally do
not need to examine these objects, CausalQueries provides two functions, inspect() and
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X

Z

Y

(a) Without options

X

Z

Y

(b) With options

Figure 2: Examples of model graphs. For help on options see ?plot_model

grab(), that allow users to quickly review these elements. The only difference between the
two is that grab() is quiet and does not produce a printout, whereas inspect() does.

Table 4 summarizes features of a causal model that can be examined using inspect().

Table 4: Elements of a model that can be inspected using inspect().

Element Description
statement A character string describing causal relations using

dagitty syntax.
nodes A list containing the nodes in the model.
parents_df A table listing nodes, whether they are root nodes or

not, and the number and names of parents they have.
parameters A vector of ‘true’ parameters.
parameter_names A vector of names of parameters.
parameter_mapping A matrix mapping from parameters into data types.
parameter_matrix A matrix mapping from parameters into causal types.
parameters_df A data frame containing parameter information.
causal_types A data frame listing causal types and the nodal types

that produce them.
nodal_types A list with the nodal types of the model.
data_types A list with all data types consistent with the model.
ambiguities_matrix A matrix mapping from causal types into data types.
prior_hyperparameters A vector of alpha values used to parameterize

Dirichlet prior distributions; optionally provide node
names to reduce output.

prior_distribution A data frame of the parameter prior distribution.
posterior_distribution A data frame of the parameter posterior distribution.
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Element Description
type_prior A matrix of type probabilities using priors.
type_posterior A matrix of type probabilities using posteriors.
prior_event_probabilities A vector of data (event) probabilities given a single

realization of parameters.
posterior_event_probabilities A sample of data (event) probabilities from the

posterior.
data A data frame with data that was provided to update

the model.
stan_summary A stanfit summary with processed parameter

names.
stanfit An unprocessed stanfit object as generated by Stan.
stan_warnings A list of warnings produced by Stan during updating.

6.3. Tailoring models

When a causal statement is provided to make_model(), the model is created with a set of
default assumptions: specifically, there are no restrictions on nodal types, and flat priors are
assumed over all parameters. These features can be modified after the model is created using
set_confounds, set_restrictions, set_priors, and set_parameters.

Allowing confounding

Unobserved confounding between two (or more) nodes arises when the nodal types for the
nodes are not independent. For instance, in the 𝑋 → 𝑌 graph, there are 2 nodal types for 𝑋
and 4 for 𝑌 . There are thus 8 joint nodal types (or causal types), as shown in Table 5.

Table 5: Nodal types in 𝑋 → 𝑌 model.

𝜃𝑋
0 𝜃𝑋

1 ∑
𝜃𝑌

00 Pr(𝜃𝑋
0 , 𝜃𝑌

00) Pr(𝜃𝑋
1 , 𝜃𝑌

00) Pr(𝜃𝑌
00)

𝜃𝑌
10 Pr(𝜃𝑋

0 , 𝜃𝑌
10) Pr(𝜃𝑋

1 , 𝜃𝑌
10) Pr(𝜃𝑌

10)
𝜃𝑌

01 Pr(𝜃𝑋
0 , 𝜃𝑌

01) Pr(𝜃𝑋
1 , 𝜃𝑌

01) Pr(𝜃𝑌
01)

𝜃𝑌
11 Pr(𝜃𝑋

0 , 𝜃𝑌
11) Pr(𝜃𝑋

1 , 𝜃𝑌
11) Pr(𝜃𝑌

11)
∑ Pr(𝜃𝑋

0 ) Pr(𝜃𝑋
1 ) 1

Table 5 has eight interior elements so that an unconstrained joint distribution would
have seven degrees of freedom. A no-confounding assumption means that Pr(𝜃𝑋, 𝜃𝑌 ) =
Pr(𝜃𝑋) Pr(𝜃𝑌 ). In this case, it is sufficient to put a distribution on the marginals, and there
would be 3 degrees of freedom for 𝑌 and 1 for 𝑋, totaling 4 rather than 7. To allow for an
unconstrained joint distribution, the parameters data frame for this model would include
two parameter families associated with the node 𝑌 . Each family represents the conditional
distribution of 𝑌 ’s nodal types, given 𝑋. For example, the parameter Y01_X.1 can be
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interpreted as Pr(𝜃𝑌 = 𝜃𝑌
01|𝜃𝑋 = 1). Refer to Table 3 for an example of a parameter matrix

with confounding.

The confounding structure can influence the number of parameters based on the underlying
DAG. Table 6 demonstrates the number of independent parameters required for different
types of confounding.

Table 6: Number of different independent parameters (degrees of freedom) for different three-
node models.

Model Degrees of freedom
X -> Y <- W 17
X -> Y <- W; X <-> W 18
X -> Y <- W; X <-> Y; W <-> Y 62
X -> Y <- W; X <-> Y; W <-> Y; X <-> W 63
X -> W -> Y <- X 19
X -> W -> Y <- X; W <-> Y 64
X -> W -> Y <- X; X <-> W; W <-> Y 67
X -> W -> Y <- X; X <-> W; W <-> Y; X <-> Y 127

Setting restrictions

It is often beneficial to constrain the set of types. In CausalQueries, this is achieved at
the nodal type level, with restrictions on causal types following those on nodal types. For
example, in analyses of data with imperfect compliance, such as in our Lipids model example,
it is common to impose a monotonicity assumption: that 𝑋 does not decrease in response
to 𝑍. This assumption is necessary to interpret instrumental variable estimates as consistent
estimates of the complier average treatment effect. In CausalQueries, we can impose this
assumption by removing types for which 𝑋 decreases in 𝑍 as follows:

R> model_restricted <-
+ lipids_model |>
+ set_restrictions("X[Z=1] < X[Z=0]")

If we wanted to retain only this nodal type rather than remove it, we could do so by pass-
ing keep = TRUE as an argument to the set_restrictions() function call. Users can use
inspect(model, "parameter_matrix") to view the resulting parameter matrix in which
both the set of parameters and the set of causal types are restricted.

Restrictions in CausalQueries can be set in several other ways described below.

• Using nodal type labels:

R> model <-
+ lipids_model |>
+ set_restrictions(labels = list(X = "01", Y = c("00", "01", "11")),
+ keep = TRUE)

• Using wildcards in nodal type labels:
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R> model <- lipids_model |>
+ set_restrictions(labels = list(Y = "?0"))

• In models with confounding, restrictions can be added to nodal types conditional on
the values of other nodal types using a given argument:

R> model <- lipids_model |>
+ set_restrictions(labels = list(Y = c('00', '11')), given = 'X.00')

Setting restrictions sometimes involves using causal syntax (see Section 8.2 for a guide to
the syntax used by CausalQueries). The help file in ?set_restrictions provides further
details and examples of restrictions users can set.

Setting Priors

Priors on model parameters can be added to the parameters data frame and interpreted
as alpha parameters of a Dirichlet distribution. The Dirichlet distribution is a probability
distribution over an 𝑛 − 1 dimensional unit simplex. It is a generalization of the Beta distri-
bution and is parameterized by an 𝑛-dimensional positive vector 𝛼. For example, a Dirichlet
distribution with 𝛼 = (1, 1, 1, 1, 1) provides a probability distribution over all non-negative
5-dimensional vectors that sum to 1, such as (0.1, 0.1, 0.1, 0.1, 0.6) or (0.1, 0.2, 0.3, 0.3, 0.1).
This specific value for 𝛼 implies that all such vectors are equally likely. Different values
for 𝛼 can be used to adjust the expectation and certainty for each dimension. For instance,
the vector 𝛼 = (100, 1, 1, 1, 100) would place more weight on distributions that are close to
(0.5, 0, 0, 0, 0.5).
In CausalQueries, priors are generally specified over the distribution of nodal types.4 For
example, in a model represented by 𝑋 → 𝑌 , there is one Dirichlet distribution over the two
types for 𝜃𝑋 and another Dirichlet distribution over the four types for 𝜃𝑌 . Importantly, it is
implicitly assumed that priors are independent across families. Thus, in a model represented
by 𝑋 → 𝑌 , we specify beliefs over 𝜆𝑋 and 𝜆𝑌 separately. CausalQueries does not allow
users to specify correlated beliefs over these parameters.5

Prior hyperparameters are set to unity by default, corresponding to uniform priors. Users
can retrieve the model’s priors as follows:

R> lipids_model |>
+ inspect("prior_hyperparameters", nodes = "X")

#>
#> prior_hyperparameters
#> Alpha parameter values used for Dirichlet prior distributions:
#>
#> X.00 X.10 X.01 X.11
#> 1 1 1 1

Alternatively users can set Jeffreys priors using set_priors() as follows:
4If there is confounding in the model, priors are specified over the conditional distribution of nodal types.
5Users can specify beliefs about 𝜆𝑌 given 𝜃𝑋 if a model involves possible confounding. However, this refers

to beliefs over a joint distribution, not jointly distributed beliefs.
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R> model <- lipids_model |>
+ set_priors(distribution = "jeffreys")

Users can also provide custom priors. The simplest way to specify custom priors is to add
them as a vector of numbers using set_priors(). For instance:

R> lipids_model |>
+ set_priors(param_names = c("X.10", "X.01"), alphas = 3:4) |>
+ inspect("prior_hyperparameters", nodes = "X")

#>
#> prior_hyperparameters
#> Alpha parameter values used for Dirichlet prior distributions:
#>
#> X.00 X.10 X.01 X.11
#> 1 3 4 1

The priors here should be interpreted as indicating 𝛼𝑋 = (1, 3, 4, 1), which implies a distribu-
tion over (𝜆𝑋

00, 𝜆𝑋
10, 𝜆𝑋

01, 𝜆𝑋
11) with expectation (1

9 , 3
9 , 4

9 , 1
9).

Providing priors as a vector of numbers for larger models can be hard. For that reason,
set_priors() allows for more targeted modifications of the parameter vector. For instance:

R> lipids_model |>
+ set_priors(statement = "X[Z=1] > X[Z=0]", alphas = 3) |>
+ inspect("prior_hyperparameters", nodes = "X")

#>
#> prior_hyperparameters
#> Alpha parameter values used for Dirichlet prior distributions:
#>
#> X.00 X.10 X.01 X.11
#> 1 1 3 1

While setting highly targeted priors is convenient and flexible, it should be done with caution.
Assigning priors to specific parameters in complex models, particularly those involving con-
founding, can significantly impact inferences. Additionally, note that flat priors over nodal
types do not necessarily equate to flat priors over queries. Flat priors over parameters within
a parameter family assign equal weight to each nodal type, which can lead to strong assump-
tions about causal quantities of interest. For example, in an 𝑋 → 𝑌 model where negative
effects are excluded, the average causal effect implied by flat priors is 1/3. This can be
demonstrated by querying the model as follows:

R> query <-
+ make_model("X -> Y") |>
+ set_restrictions(decreasing("X", "Y")) |>
+ query_model("Y[X=1] - Y[X=0]", using = "priors")

More subtly, the structure of a model, coupled with flat priors, has substantive importance for
priors on causal quantities. For instance, with flat priors, prior on the probability that 𝑋 has
a positive effect on 𝑌 in the model 𝑋 → 𝑌 is centered on 1/4. But prior on the probability
that 𝑋 positively affects 𝑌 in the model 𝑋 → 𝑀 → 𝑌 is centered on 1/8. Caution regarding
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priors is essential when models are not identified, as is the case for many models considered
here. For some quantities, the marginal posterior distribution reflects the marginal prior
distribution (Poirier 1998).

Setting Parameters

By default, models include a vector of parameter values within the parameters_df data
frame. These values are useful for generating data or for scenarios like process tracing, where
inferences about causal types (𝜃) are made from case-level data, assuming the model is known.
The process of setting parameters is similar to setting priors. The key difference is that while
the 𝛼 value assigned to nodal types can be any positive number—reflecting our confidence in
the parameter value—the parameter values themselves must be within the unit interval, [0, 1].
If parameter values provided are outside this interval, they are normalized to fit within it.

The causal model below has two parameter sets, one for 𝑋 and one for 𝑌 , with two nodal
types for 𝑋 and four for 𝑌 . The key feature of the parameters is that they must sum to 1
within each parameter set.

R> make_model("X -> Y") |>
+ inspect("parameters")

#>
#> parameters
#> Model parameters with associated probabilities:
#>
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.50 0.50 0.25 0.25 0.25 0.25

The example below illustrates a change in the value of the parameter that corresponds to a
positive effect of 𝑋 on 𝑌 . Here, the nodal type Y.Y01 is set to be 0.7, while the other nodal
types of this parameter set were re-normalized so that the parameters in the set still sum up
to one.

R> make_model("X -> Y") |>
+ set_parameters(statement = "Y[X=1] > Y[X=0]", parameters = .7) |>
+ inspect("parameters")

#>
#> parameters
#> Model parameters with associated probabilities:
#>
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.5 0.5 0.1 0.1 0.7 0.1

6.4. Drawing and manipulating data

Once a model has been defined, it is possible to simulate data from the model using the
make_data() function. For instance, this can be useful for assessing a model’s expected
performance given data drawn from some speculated set of parameter values.
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Drawing data basics

Generating data requires a specification of parameter values. The parameter values in the
parameters data frame are used by default. Otherwise users can provide parameters on the
fly.

R> lipids_model |>
+ make_data(n = 4)

#> Z X Y
#> 1 0 0 0
#> 2 0 0 1
#> 3 1 1 0
#> 4 1 1 1

The resulting data is ordered by data type, as shown in the example above. Users can also
specify parameters directly or draw parameters from a prior or posterior distribution by
specifying param_type argument in the make_data() call.

Drawing incomplete data

CausalQueries can be used when researchers have gathered different amounts of data for
different nodes. For example, a researcher might gather data on 𝑋 and 𝑌 for all units, but
only have data on 𝑀 for some units. The make_data() function enables users to simulate
such data by specifying a data strategy that outlines the probabilities of observing data for
different nodes, potentially based on previously observed nodes.

R> sample_data <-
+ lipids_model |>
+ make_data(n = 8,
+ nodes = list(c("Z", "Y"), "X"),
+ probs = list(1, .5),
+ subsets = list(TRUE, "Z==1 & Y==0"))

Reshaping data

Data produced by make_data() typically comes in a “long” format, where each row represents
a single observation. However, for model updating, the data should be in a “compact” format
that summarizes the number of units for each data type, organized by data “strategy,” which
indicates the nodes for which data was collected. The CausalQueries package provides
function collapse_data() that allow users to convert data to compact format.

R> sample_data |>
+ collapse_data(lipids_model)

#> event strategy count
#> 1 Z0X0Y0 ZXY 0
#> 2 Z1X0Y0 ZXY 1
#> 3 Z0X1Y0 ZXY 0
#> 4 Z1X1Y0 ZXY 1
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#> 5 Z0X0Y1 ZXY 0
#> 6 Z1X0Y1 ZXY 0
#> 7 Z0X1Y1 ZXY 0
#> 8 Z1X1Y1 ZXY 0
#> 9 Z0Y0 ZY 1
#> 10 Z1Y0 ZY 2
#> 11 Z0Y1 ZY 1
#> 12 Z1Y1 ZY 2

In the same way, it is possible to move from compact to long format using expand_data().6

7. Updating models

The approach used by the CausalQueries package to update parameter values given observed
data relies on the Stan programming language (Carpenter et al. 2017). Below we explain the
data required by the generic Stan program implemented in the package, the structure of that
program, and then show how to use the package to produce posterior draws of parameters.

7.1. Data for Stan

We use a generic Stan program that works for all binary causal models. The main advantage
of the generic program is that it allows us to pass the details of the causal model as data inputs
to Stan instead of generating individual Stan programs for each causal model. Appendix B
provides the complete Stan model code.

The data required by the Stan program includes vectors of observed data and priors on
parameters, as well as a set of matrices needed for the mapping between events, data types,
causal types, and parameters. In addition, data passed to stan includes counts of all relevant
quantities as well as start and end positions of parameters pertaining to specific nodes and
distinct data strategies. The internal function prep_stan_data() takes the model and data as
arguments and produces a list with all objects that are required by the generic Stan program.
Package users do not need to call the prep_stan_data() function directly.

7.2. How the Stan program works

The Stan model involves the following elements: (1) a specification of priors over sets of pa-
rameters, (2) a mapping from parameters to event probabilities, and (3) a likelihood function.
Below, we describe each of those elements in more detail.

Probability distributions over parameter sets

The causal structure provided by a DAG simplifies the problem of generating a probability
distribution over all parameters by focusing on distributions over sets of parameters. In the
absence of unobserved confounding, these sets correspond to the nodal types for each node,
resulting in a probability distribution over these nodal types. For example, in the 𝑋 → 𝑌

6Note that NA’s are interpreted as data not being sought.
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model, there are two parameter sets. The 𝑋 nodal types are represented by a 2-dimensional
Dirichlet distribution, (𝜆𝑋

0 , 𝜆𝑋
1 ) ∼ Dirichlet(𝛼𝑋

0 , 𝛼𝑋
1 ), and the 𝑌 nodal types are represented

by a 4-dimensional Dirichlet distribution, (𝜆𝑌
00, 𝜆𝑌

10, 𝜆𝑌
01, 𝜆𝑌

11) ∼ Dirichlet(𝛼𝑌
00, 𝛼𝑌

10, 𝛼𝑌
01, 𝛼𝑌

11).

In cases involving confounding, these parameter sets are defined for a given node, conditional
on the values of other nodes.

Event probabilities

We calculate the probability of data types for any parameter vector 𝜆. This is done using a
matrix that maps from parameters into data types.

In cases without confounding, there is a column for each data type; the matrix indicates which
nodes in each set “contribute” to the data type, and the probability of the data type is found
by summing within sets and taking the product over sets. To illustrate, we can examine the
parameter mapping matrix for a simple model using the inspect() function as follows:

R> make_model("X -> Y") |>
+ inspect("parameter_mapping")

#>
#> parameter_mapping (Parameter mapping matrix)
#>
#> Maps from parameters to data types, with
#> possibly multiple columns for each data type
#> in cases with confounding.
#>
#> X0Y0 X1Y0 X0Y1 X1Y1
#> X.0 1 0 1 0
#> X.1 0 1 0 1
#> Y.00 1 1 0 0
#> Y.10 0 1 1 0
#> Y.01 1 0 0 1
#> Y.11 0 0 1 1

The probability of each data type can be determined using the parameter mapping matrix
by combining a parameter vector with the corresponding column of the matrix. For instance,
in the model above, the probability of the data type X0Y0, denoted as 𝑤00, is calculated as
𝜆𝑋

0 × (𝜆𝑌
00 + 𝜆𝑌

01). This represents the product of the probability of X.0 and the sum of the
probabilities for Y.00 and Y.01.

In cases with confounding, the approach is similar, except that the parameter mapping matrix
can contain multiple columns for each data type to capture non-independence between nodes.

In the case of incomplete data, we first identify the set of data strategies, where a collection of
a data strategy might be of the form “gather data on 𝑋 and 𝑀 , but not 𝑌 , for 𝑛1 cases and
gather data on 𝑋 and 𝑌 , but not 𝑀 , for 𝑛2 cases.” Within a data strategy, the probability
of an observed event is given by summing the probabilities of the types that could give rise
to a particular pattern of incomplete data.
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Data probability

Once we have the event probabilities in hand for each data strategy, we are ready to calcu-
late the probability of the data. For a given data strategy, this is given by a multinomial
distribution with these event probabilities. When there is incomplete data, and so there are
multiple data strategies, the probability of the data is given by the product of the multinomial
probabilities for data generated by each strategy.

7.3. Implementation

The update_model() function is used to update a model by appending a posterior distribution
over the model parameters. This function utilizes rstan::sampling() to draw from the
posterior distribution, and users can pass any additional arguments that rstan::sampling()
accepts. Since model updating can be slow for complex models, Appendix A demonstrates
how users can employ parallelization to enhance computation speed. Appendix C offers an
overview of model updating benchmarks, assessing the impact of model complexity and data
size on updating times.

Users have the option to provide a data argument when calling update_model(). This
argument should be a data frame that includes some or all of the nodes in the model. It
is optional; if no data is provided, the Stan model will still run, and the resulting posterior
distribution added to the model will be interpreted as draws from the prior distribution.

7.4. Incomplete and censored data

CausalQueries assumes that missing data is missing at random, conditional on observed
data. For instance, in an 𝑋 → 𝑀 → 𝑌 model, a researcher might have chosen to collect data
on 𝑀 in a random set of cases in which 𝑋 = 1 and 𝑌 = 1. If there are positive relations
at each stage, one may be more likely to observe 𝑀 in cases in which 𝑀 = 1. However, the
observation of 𝑀 is still random and conditional on the observed 𝑋 and 𝑌 data. The Stan
model in CausalQueries takes account of this kind of sampling by assessing the probability
of observing a particular pattern of data within each data strategy.7

Additionally, you can specify when data has been censored, allowing the Stan model to account
for it. For example, consider a scenario where we only observe 𝑋 when 𝑋 = 1 and not when
𝑋 = 0. This type of sampling is non-random and depends on observable variables. You can
address this by informing Stan that the probability of observing a particular data type is
0, regardless of parameter values. This is achieved using the censored_types argument in
update_model().

To illustrate, in the example below, we observe perfectly correlated data for 𝑋 and 𝑌 . If we
are aware that data in which 𝑋 ≠ 𝑌 has been censored, then when we update, we do not
move towards a belief that 𝑋 causes 𝑌 .

R> data <- data.frame(X = rep(0:1, 5), Y = rep(0:1, 5))
R>
R> list(

7For further discussion, see Section 9.2.3.2 in Humphreys and Jacobs (2023).
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+ uncensored =
+ update_model(make_model("X -> Y"),
+ data),
+ censored =
+ update_model(make_model("X -> Y"),
+ data,
+ censored_types = c("X1Y0", "X0Y1"))
+ ) |>
+ query_model("Y[X=1] - Y[X=0]", using = "posteriors")

#>
#> Causal queries generated by query_model (all at population level)
#>
#> |label |model |using | mean| sd| cred.low| cred.high|
#> |:---------------|:----------|:----------|-----:|-----:|--------:|---------:|
#> |Y[X=1] - Y[X=0] |uncensored |posteriors | 0.590| 0.194| 0.168| 0.897|
#> |Y[X=1] - Y[X=0] |censored |posteriors | 0.018| 0.315| -0.614| 0.629|

7.5. Output

The main output of the update_model() function is a model that includes a posterior distri-
bution of the model parameters, stored as a data frame within the model list. You can access
this posterior distribution directly using the grab() function (or use the inspect() function
for a more detailed output) as shown below:

R> model <-
+ make_model("X -> Y") |>
+ update_model()
R>
R> posterior <- inspect(model, "posterior_distribution")

#>
#> posterior_distribution
#> Summary statistics of model parameters posterior distributions:
#>
#> Distributions matrix dimensions are
#> 4000 rows (draws) by 6 cols (parameters)
#>
#> mean sd
#> X.0 0.51 0.28
#> X.1 0.49 0.28
#> Y.00 0.25 0.19
#> Y.10 0.25 0.19
#> Y.01 0.25 0.19
#> Y.11 0.25 0.20

Additionally, a distribution of causal types is stored by default. Optionally, the stanfit
object and a distribution over event probabilities can also be saved as shown below:
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R> lipids_model <-
+ lipids_model |>
+ update_model(keep_fit = TRUE,
+ keep_event_probabilities = TRUE)

The summary of the Stan model can be accessed using inspect() function and is saved in
the updated model object by default. This provides two measures to help assess convergence.

R> make_model("X -> Y") |>
+ update_model(keep_type_distribution = FALSE) |>
+ inspect("stan_summary")

#>
#> stan_summary
#> Stan model summary:
#>
#> Inference for Stan model: simplexes.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> X.0 0.50 0.01 0.29 0.03 0.25 0.49 0.74 0.97 3036 1.00
#> X.1 0.50 0.01 0.29 0.03 0.26 0.51 0.75 0.97 3036 1.00
#> Y.00 0.25 0.00 0.19 0.01 0.09 0.21 0.37 0.70 2031 1.00
#> Y.10 0.25 0.00 0.19 0.01 0.09 0.21 0.37 0.71 4633 1.00
#> Y.01 0.25 0.00 0.20 0.01 0.09 0.20 0.37 0.72 4162 1.00
#> Y.11 0.25 0.00 0.20 0.01 0.09 0.20 0.37 0.71 4701 1.00
#> lp__ 1.00 0.02 0.96 0.03 0.30 0.72 1.39 3.43 2536 1.00
#> log_sum_gammas[2] 1.85 0.03 1.19 0.36 1.00 1.58 2.41 4.93 1159 1.01
#> lp__ -7.53 0.04 1.65 -11.75 -8.37 -7.15 -6.32 -5.44 1368 1.00
#>
#> Samples were drawn using NUTS(diag_e) at Wed Feb 12 16:35:14 2025.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).

This summary provides information on the distribution of parameters and convergence diag-
nostics, summarized in the Rhat column. The last row shows the unnormalized log density on
Stan’s unconstrained space, which is intended to diagnose sampling efficiency and evaluate
approximations.8 This summary can also include summaries for the transformed parameters
if users retain these.

7.6. Convergence problems and diagnostics

There is no guarantee that updating will produce reliable posterior draws. Indeed for some
models, convergence failure are predictable. Fortunately, stan provides warnings that alert

8See Stan documentation for more details.

https://mc-stan.org/cmdstanr/reference/fit-method-lp.html
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users to possible problems. These warnings are retained by CausalQueries and repeated in
model summaries or when queries are posed.

In the example below the missing data on 𝑀 means that there is no information to assess
whether the strong relation between 𝑋 and 𝑌 is due to positive effects.

R> model <-
+ make_model("X -> M -> Y") |>
+ update_model(data = data.frame(X = rep(0:1, 10000), Y = rep(0:1, 10000)),
+ iter = 5000,
+ refresh = 0)

The print and summary methods returns warnings alerting users to the problem thus:

R> model

#>
#> Causal statement:
#> M -> Y; X -> M
#>
#> Number of nodal types by node:
#> X M Y
#> 2 4 4
#>
#> Number of causal types: 32
#>
#> Model has been updated and contains a posterior distribution with
#> 4 chains, each with iter=5000; warmup=2500; thin=1;
#> Use inspect(model, 'stan_summary') to inspect stan summary
#>
#> Warnings passed from rstan during updating:
#> The largest R-hat is 1.73, indicating chains have not mixed
#> Bulk Effective Samples Size (ESS) is too low
#> Tail Effective Samples Size (ESS) is too low

If users wish to run more advanced diagnostics of performance, they can retain and access
the “raw” Stan output as follows:

R> model <-
+ make_model("X -> Y") |>
+ update_model(refresh = 0, keep_fit = TRUE)

Note that the raw output uses labels from the generic Stan model: lambda for the
vector of parameters, corresponding to the parameters in the parameters data frame
(inspect(model, "parameters_df")), a vector types for the causal types (inspect(model,
"causal_types")) and event_probabilities for the event probabilities (inspect(model,
"event_probabilities")).

R> model |>
+ inspect("stanfit")

#>
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#> stanfit
#> Stan model summary:
#> Inference for Stan model: simplexes.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> lambdas[1] 0.50 0.01 0.29 0.03 0.25 0.50 0.75 0.97 2558 1
#> lambdas[2] 0.50 0.01 0.29 0.03 0.25 0.50 0.75 0.97 2558 1
#> lambdas[3] 0.25 0.00 0.20 0.01 0.09 0.20 0.37 0.71 2012 1
#> lambdas[4] 0.26 0.00 0.20 0.01 0.10 0.21 0.38 0.72 4663 1
#> lambdas[5] 0.25 0.00 0.20 0.01 0.08 0.20 0.37 0.71 4851 1
#> lambdas[6] 0.25 0.00 0.19 0.01 0.09 0.20 0.36 0.71 4266 1
#> log_sum_gammas[1] 0.99 0.02 0.99 0.03 0.28 0.69 1.37 3.68 2209 1
#> log_sum_gammas[2] 1.87 0.03 1.21 0.34 0.99 1.61 2.45 5.02 1315 1
#> types[1] 0.13 0.00 0.14 0.00 0.03 0.08 0.18 0.49 2317 1
#> types[2] 0.12 0.00 0.13 0.00 0.02 0.07 0.18 0.49 2150 1
#> types[3] 0.13 0.00 0.14 0.00 0.03 0.08 0.18 0.51 3350 1
#> types[4] 0.13 0.00 0.13 0.00 0.03 0.08 0.18 0.50 3460 1
#> types[5] 0.12 0.00 0.13 0.00 0.03 0.08 0.18 0.49 3676 1
#> types[6] 0.12 0.00 0.14 0.00 0.02 0.08 0.18 0.51 3694 1
#> types[7] 0.12 0.00 0.13 0.00 0.03 0.08 0.18 0.47 3424 1
#> types[8] 0.12 0.00 0.13 0.00 0.03 0.08 0.18 0.49 3166 1
#> lp__ -7.55 0.05 1.66 -11.87 -8.39 -7.15 -6.33 -5.45 1357 1
#>
#> Samples were drawn using NUTS(diag_e) at Wed Feb 12 16:35:28 2025.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).

Users can then pass the stanfit object to other diagnostic packages such as bayesplot.

8. Queries

CausalQueries provides functionality to pose and answer elaborate causal queries. The key
approach is to code causal queries as functions of causal types and return a distribution over
the queries implied by the distribution over causal types. The primary approach is to use
query_model() to generate an object of class model_query (see Section 5) which prints to a
table or can be plotted directly. The next sections describe how such queries are calculated
and the syntax used for posing queries.

8.1. Calculating factual and counterfactual quantities

An essential step in calculating most queries is assessing what outcomes will arise for causal
types given different interventions on nodes. In practice, we map from causal types to data
types by propagating realized values on nodes forward in the DAG, moving from exogenous
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or intervened upon nodes to their descendants in generational order. An internal function,
realise_outcomes(), achieves this by traversing the DAG while recording the values implied
by realizations on the node’s parents for each node’s nodal types.

To illustrate, consider the first causal type of a 𝑋 → 𝑌 model:

1. 𝜃𝑋
0 implies that, absent intervention on 𝑋, 𝑋 has a realized value of 0; 𝜃𝑌

00 implies that,
absent intervention on 𝑌 , 𝑌 has a realized value of 0 regardless of 𝑋.

2. We substitute for 𝑌 the value implied by the 00 nodal type given a 0 value on 𝑋, which
in turn is 0.

The realise_outcomes() function, when called on this model, outputs the realized values
for all causal types, with row names indicating the corresponding causal types.

R> make_model("X -> Y") |>
+ realise_outcomes()

#> X Y
#> 0.00 0 0
#> 1.00 1 0
#> 0.10 0 1
#> 1.10 1 0
#> 0.01 0 0
#> 1.01 1 1
#> 0.11 0 1
#> 1.11 1 1

Intervening on 𝑋 (see Pearl 2009) with 𝑑𝑜(𝑋 = 1) yields:

R> make_model("X -> Y") |>
+ realise_outcomes(dos = list(X = 1))

#> X Y
#> 0.00 1 0
#> 1.00 1 0
#> 0.10 1 0
#> 1.10 1 0
#> 0.01 1 1
#> 1.01 1 1
#> 0.11 1 1
#> 1.11 1 1

Similarly, realise_outcomes() can return the realized values on all nodes for each causal
type given arbitrary interventions.

8.2. Causal syntax

CausalQueries provides syntax for the formulation of various causal queries including queries
on all rungs of the “causal ladder” (Pearl 2009): prediction, such as the proportion of units
where 𝑌 equals 1; intervention, such as the probability that 𝑌 = 1 when 𝑋 is set to 1;
counterfactuals, such as the probability that 𝑌 would be 1 were 𝑋 = 1 given we know 𝑌 is
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0 when 𝑋 was observed to be 0. Queries can be posed at the population level or case level
and can be unconditional (e.g., what is the effect of 𝑋 on 𝑌 for all units) or conditional (for
example, the effect of 𝑋 on 𝑌 for units for which 𝑍 affects 𝑋). This syntax enables users to
write arbitrary causal queries to interrogate their models.

The core of querying involves determining which causal types correspond to specific queries.
Users can use logical statements to inquire about observed conditions without interventions
for factual queries. For instance, consider the query about the proportion of units where 𝑌
equals 1, expressed as "Y == 1". Here, the logical operator == signifies that CausalQueries
should consider units that meet the strict equality condition where 𝑌 equals 1.9 When this
query is executed, the get_query_types() function identifies all types that result in 𝑌 = 1
without any interventions.

R> make_model("X -> Y") |>
+ get_query_types("Y==1")

#>
#> Causal types satisfying query's condition(s)
#>
#> query = Y==1
#>
#> X0.Y10 X1.Y01
#> X0.Y11 X1.Y11
#>
#>
#> Number of causal types that meet condition(s) = 4
#> Total number of causal types in model = 8

The key to forming causal queries is being able to ask about the values of variables, given that
the values of some other variables are “controlled.” This corresponds to the application of the
𝑑𝑜 operator in Pearl (2009). In CausalQueries, this is done by putting square brackets, [ ],
around variables that are intervened upon.

For instance, consider the query Y[X=0]==1. This query asks about the types for which 𝑌
equals 1 when 𝑋 is set to 0. Since 𝑋 is set to zero, 𝑋 is placed inside the brackets. Given
that 𝑌 equals 1 is a condition about potentially observed values, it is expressed using the
logical operator ==. The set of causal types that meets this query is quite different:

R> make_model("X -> Y") |>
+ get_query_types("Y[X=1]==1")

#>
#> Causal types satisfying query's condition(s)
#>
#> query = Y[X=1]==1
#>
#> X0.Y01 X1.Y01
#> X0.Y11 X1.Y11

9CausalQueries also accepts = as a shorthand for ==, but == is preferred as it is the standard logical
operator.
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#>
#>
#> Number of causal types that meet condition(s) = 4
#> Total number of causal types in model = 8

When a node has multiple parents, it is possible to set the values of none, some, or all
of the parents. For instance if 𝑋1 and 𝑋2 are parents of 𝑌 then Y==1, Y[X1=1]==1, and
Y[X1=1, X2=1]==1 queries cases for which 𝑌 = 1 when, respectively, neither parents values
are controlled, when 𝑋1 is set to 1 but 𝑋2 is not controlled, and when both 𝑋1 and 𝑋2 are
set to 1. For instance:

R> make_model("X1 -> Y <- X2") |>
+ get_query_types("X1==1 & X2==1 & (Y[X1=1, X2=1] > Y[X1=0, X2=0])")

#>
#> Causal types satisfying query's condition(s)
#>
#> query = X1==1&X2==1&(Y[X1=1,X2=1]>Y[X1=0,X2=0])
#>
#> X11.X21.Y0001 X11.X21.Y0101
#> X11.X21.Y0011 X11.X21.Y0111
#>
#>
#> Number of causal types that meet condition(s) = 4
#> Total number of causal types in model = 64

In this case, the aim is to identify the types for which in fact 𝑋1 = 1 and 𝑋2 = 1 in addition
𝑌 = 0 when 𝑋1 = 𝑋2 = 0, and 𝑌 = 1 when 𝑋1 = 𝑋2 = 1.

Conditional queries

Many queries of interest are “conditional” queries. For example, the effect of 𝑋 on 𝑌 for
units for which 𝑊 = 1 or the effect of 𝑋 on 𝑌 for units for which 𝑍 positively affects 𝑋.
Such conditional queries are posed in CausalQueries by providing a given statement and the
query statement or by placing the condition following a :|: separator in the query expression.
For instance "Y[X=1]==1 :|: X==0" asks for the probability that 𝑌 = 1 when 𝑋 is set to 1
for a case in which in fact 𝑋 = 0. The entire query then becomes: for what units does the
query condition hold among those units for which the given condition holds? The two parts
can each be calculated using get_query_types. Thus, for instance, in an 𝑋 → 𝑌 model, the
probability that 𝑋 causes 𝑌 given 𝑋 = 1 & 𝑌 = 1 is the probability of causal X1.Y11 type
divided by the sum of the probabilities of types X1.Y11 and X1.Y01. In practice, this is done
automatically for users when they call query_model() or query_distribution().

Complex expressions

Many queries involve complex statements across multiple sets of types, which can be con-
structed using relational operators. For instance, users can query whether 𝑋 has a positive
effect on 𝑌 by checking if 𝑌 is greater when 𝑋 is set to 1 compared to when 𝑋 is set to 0.



Journal of Statistical Software 29

This is expressed as "Y[X=1] > Y[X=0]". The query “𝑋 has some effect on 𝑌 ” is given by
"Y[X=1] != Y[X=0]".

Linear operators can also be used over a set of simple statements. Thus "Y[X=1] - Y[X=0]"
returns the average treatment effect. In essence, rather than returning a TRUE or FALSE for
the two parts of the query, the case memberships are forced to numeric values (1 or 0), and
the differences are taken, which can be a 1, 0 or −1 depending on the causal type. Averaging
provides the share of cases with positive effects, less the share of cases with negative effects.

R> make_model("X -> Y") |>
+ get_query_types("Y[X=1] - Y[X=0]")

#> X0.Y00 X1.Y00 X0.Y10 X1.Y10 X0.Y01 X1.Y01 X0.Y11 X1.Y11
#> 0 0 -1 -1 1 1 0 0

Nested queries

CausalQueries lets users pose nested “complex counterfactual” queries. Rather than stip-
ulating a value to which some node is to be set, the user can set the value to the value
that the node would take given actions taken on ancestor nodes. For instance "Y[M=M[X=0],
X=1]==1" queries the types for which 𝑌 equals 1 when 𝑋 is set to 1, while keeping 𝑀 constant
at whatever value it would take if 𝑋 were set to 0.

8.3. Quantifying queries

To provide a quantitative answer to a query, it is necessary to assign probabilities to the causal
types that correspond to the query.

Queries by hand

Queries can be calculated directly from the prior distribution or the posterior distribution
provided by Stan. For instance, the following call plots the posterior distribution for the
probability that 𝑌 is increasing in 𝑋 for the 𝑋 → 𝑌 model. The resulting plot is shown in
Figure 3.

R> data <- data.frame(X = rep(0:1, 50), Y = rep(0:1, 50))
R>
R> model <-
+ make_model("X -> Y") |>
+ update_model(data, iter = 4000, refresh = 0)
R>
R> model |>
+ grab("posterior_distribution") |>
+ ggplot(aes(Y.01 - Y.10)) + geom_histogram()
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Figure 3: Posterior on “Probability 𝑌 is increasing in 𝑋”.

Query distribution

It is generally helpful to use causal syntax to define the query and calculate the query with
respect to the prior or posterior probability distributions. This can be done for a list of queries
using query_distribution() function as follows:

R> queries <-
+ make_model("X -> Y") |>
+ query_distribution(
+ query = list(increasing = "(Y[X=1] > Y[X=0])",
+ ATE = "(Y[X=1] - Y[X=0])"),
+ using = "priors")

The result is a data frame with one column per query and rows for draws from prior or
posterior distributions as requested.

The core function query_model implements query_distribution and reports summaries of
distributions.

Case queries

The commands query_distribution() and query_model() can also be used when one is
interested in assessing the value of a query about a new case that we might confront.

In a sense, this is equivalent to posing a conditional query, querying conditional on values in
a case. For instance, we might consult our posterior for the Lipids model and ask about the
effect of 𝑋 on 𝑌 for a case in which 𝑍 = 1, 𝑋 = 1 and 𝑌 = 1.

R> lipids_model |>
+ query_model(
+ query = "Y[X=1] - Y[X=0] :|: X==1 & Y==1 & Z==1",
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+ using = "posteriors") |>
+ plot()

Causal Queries
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Y[X=1] − Y[X=0] 
given X==1 & Y==1 & Z==1

value
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posteriors

The result is what we should now believe for all cases in which 𝑍 = 1, 𝑋 = 1, and 𝑌 = 1.
It is the expected average effect among cases with this data type, so this expectation has an
uncertainty attached to it, reflecting our uncertainty about the expectation.

This can differ, however, from what we would infer if we were presented with a new case
drawn from the population. When examining a new case, we must update based on the
information provided about that case. This new case-level inference is calculated when the
case_level = TRUE argument is specified. For a query 𝑄 and given 𝐷, this returns the
value ∫ 𝜋(𝑄&𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖

∫ 𝜋(𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖
, which may differ from the mean of the distribution 𝜋(𝑄&𝐷|𝜆)

𝜋(𝐷|𝜆) given
by ∫ 𝜋(𝑄&𝐷|𝜆𝑖)

𝜋(𝐷|𝜆𝑖) 𝑝(𝜆𝑖)𝑑𝜆𝑖.

To illustrate the difference, consider an 𝑋 → 𝑀 → 𝑌 model where we are quite certain that
𝑋 causes 𝑌 , but unsure whether this effect works through two positive or two negative effects.
If asked what we would think about effects in cases 𝑀 = 0 (or with 𝑀 = 1), we have little
basis to know whether these are cases in which effects are more or less likely. However, if
we randomly find a case and we observe that 𝑀 = 0, our understanding of the causal model
evolves, leading us to believe there is (or is not) an effect in this specific case. The case-level
query gives a single value without posterior standard deviation, representing the belief about
this new case.

R> make_model("X -> M -> Y") |>
+ update_model(data.frame(X = rep(0:1, 8), Y = rep(0:1, 8)), iter = 4000) |>
+ query_model("Y[X=1] > Y[X=0] :|: X==1 & Y==1 & M==1",
+ using = "posteriors",
+ case_level = c(TRUE, FALSE)) |>
+ plot()

Causal Queries
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Batch queries

The function query_model() can also be used to pose multiple queries of multiple models
in batch. The function takes a list of models, causal queries, and conditions as inputs. It
then calculates population or case level estimands given prior or posterior distributions and
reports summaries of these distributions. The result is a data frame of class model_query
(see Section 5) that can be displayed as a table or used for graphing. The associated plot
method produces plots with class c("gg", "ggplot").

Since users can adjust multiple lists of features of a query there is an option, expand_grid =
TRUE, to indicate whether to query with respect to all combinations of supplied arguments.

To illustrate, we return again to the limits model but now consider two versions, one with
and one without a monotonicity restriction imposed.

R> models <- list(
+ Unrestricted = lipids_model |>
+ update_model(data = lipids_data, refresh = 0),
+
+ Restricted = lipids_model |>
+ set_restrictions("X[Z=1] < X[Z=0]") |>
+ update_model(data = lipids_data, refresh = 0)
+)

Table 7 then shows the output from a single call to query_model() with the expand_grid
argument set to TRUE to generate all combinations of list elements.

R> queries <-
+ query_model(
+ models,
+ query = list(ATE = "Y[X=1] - Y[X=0]",
+ POS = "Y[X=1] > Y[X=0] :|: Y==1 & X==1"),
+ case_level = c(FALSE, TRUE),
+ using = c("priors", "posteriors"),
+ expand_grid = TRUE)

Table 7: Results for two queries on two models.

label model query given using case_level mean sd
ATE Unrestricted Y[X=1] - Y[X=0] - priors FALSE 0.00 0.20
ATE Restricted Y[X=1] - Y[X=0] - priors FALSE 0.00 0.23
ATE Unrestricted Y[X=1] - Y[X=0] - posteriors FALSE 0.56 0.10
ATE Restricted Y[X=1] - Y[X=0] - posteriors FALSE 0.56 0.10
POS Unrestricted Y[X=1] > Y[X=0] Y==1 & X==1 priors FALSE 0.50 0.22
POS Restricted Y[X=1] > Y[X=0] Y==1 & X==1 priors FALSE 0.49 0.24
POS Unrestricted Y[X=1] > Y[X=0] Y==1 & X==1 posteriors FALSE 0.95 0.04
POS Restricted Y[X=1] > Y[X=0] Y==1 & X==1 posteriors FALSE 0.95 0.04
ATE Unrestricted Y[X=1] - Y[X=0] - priors TRUE 0.00 NA
ATE Restricted Y[X=1] - Y[X=0] - priors TRUE 0.00 NA
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ATE Unrestricted Y[X=1] - Y[X=0] - posteriors TRUE 0.56 NA
ATE Restricted Y[X=1] - Y[X=0] - posteriors TRUE 0.56 NA
POS Unrestricted Y[X=1] > Y[X=0] Y==1 & X==1 priors TRUE 0.50 NA
POS Restricted Y[X=1] > Y[X=0] Y==1 & X==1 priors TRUE 0.49 NA
POS Unrestricted Y[X=1] > Y[X=0] Y==1 & X==1 posteriors TRUE 0.95 NA
POS Restricted Y[X=1] > Y[X=0] Y==1 & X==1 posteriors TRUE 0.95 NA

Figure 4 shows the default plot associated with this query.

Restricted Unrestricted
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Figure 4: Default plotting for a a set of queries over multiple models.

9. Summary and discussion

CausalQueries provides an intuitive user interface to generate, update, and query causal
models defined over binary nodes.

A particular strength is the flexibility users enjoy in specifying the structure of causal models
and querying them using an integrated framework. Rather than requiring bespoke func-
tions for different types of problems—studying treatment effects in randomized experiments,
complier effects in encouragement designs, or mediation quantities in more complex causal
structures—a unified procedure is used for defining models and for updating on model param-
eters. With updated models in hand, queries involving arbitrary 𝑑𝑜 operations can be posed
using an intuitive syntax.

We identify several areas for future expansion of the package’s functionality. One area involves
extending the class of models that can be passed to make_model() to accommodate non-binary
data and hierarchical data structures. Proofs of concept for both extensions are available in
Humphreys and Jacobs (2023). Inspired by new work in Irons and Cinelli (2023), we see
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potential in allowing the specification of more flexible prior distributions and developing
algorithms for faster updating in these settings. Inspired by conditions for identification of
mediation quantities in Forastiere, Mattei, and Ding (2018), we see potential for allowing
more flexible constraints over the joint distribution of nodal types. For querying, we see
scope for facilitating nonlinear complex causal queries, such as risk ratios, which currently
require combining multiple simple causal queries. Finally, we see potential for more integrated
functionality for model validation, including assessments of the sensitivity of conclusions to
priors.
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Computational details and software requirements

Version • 1.3.3
Availability • Stable Release: https://cran.r

studio.com/web/packages/Ca
usalQueries/index.html

• Development:
https://github.com/integrate
d-inferences/CausalQueries

Issues • https:
//github.com/integrated-infe
rences/CausalQueries/issues

Operating
Systems

• Linux
• MacOS
• Windows

Testing
Environments
OS

• Ubuntu 22.04.2
• Debian 12.2
• MacOS
• Windows

Testing
Environments
R

• R 4.3.1
• R 4.3.0
• R 4.2.3
• r-devel

R Version • R(>= 3.4.0)
Compiler • either of the below or similar:

• g++
• clang++

Stan
requirements

• inline
• RcppEigen (>= 0.3.3.3.0)
• RcppArmadillo (>=

0.12.6.4.0)
• RcppParallel (>= 5.1.4)
• BH (>= 1.66.0)
• StanHeaders (>= 2.26.0)
• rstan (>= 2.26.0)

R-Packages
Depends

• methods

https://cran.rstudio.com/web/packages/CausalQueries/index.html
https://cran.rstudio.com/web/packages/CausalQueries/index.html
https://cran.rstudio.com/web/packages/CausalQueries/index.html
https://github.com/integrated-inferences/CausalQueries
https://github.com/integrated-inferences/CausalQueries
https://github.com/integrated-inferences/CausalQueries/issues
https://github.com/integrated-inferences/CausalQueries/issues
https://github.com/integrated-inferences/CausalQueries/issues
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R-Packages
Imports

• dirmult (>= 0.1.3-4) |
• dplyr |
• stats (>= 4.1.1) |
• rlang (>= 0.2.0) |
• rstan (>= 2.26.0) |
• rstantools (>= 2.0.0) |
• stringr (>= 1.4.0) |
• ggdag (>= 0.2.4) |
• latex2exp (>= 0.9.4) |
• ggplot2 (>= 3.3.5) |
• lifecycle (>= 1.0.1) |
• Rcpp (>= 0.12.0) |

The results in this paper were obtained using R~4.3 with the MASS~7.3-60 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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Appendix A: Parallelization

If users have access to multiple cores, parallel processing can be implemented by including
this line before running CausalQueries:

R> library(parallel)
R>
R> options(mc.cores = parallel::detectCores())

Additionally, parallelizing across models or data while running MCMC chains in parallel can
be achieved by setting up a nested parallel process. With 8 cores one can run two updating
processes with three parallel chains each simultaneously. More generally the number of parallel
processes at the upper level of the nested parallel structure are given by ⌊ 𝑐𝑜𝑟𝑒𝑠

𝑐ℎ𝑎𝑖𝑛𝑠+1⌋.

R> library(future)
R> library(future.apply)
R>
R> chains <- 3
R> cores <- 8
R>
R> future::plan(list(
+ future::tweak(future::multisession,
+ workers = floor(cores/(chains + 1))),
+ future::tweak(future::multisession,
+ workers = chains)
+ ))
R>
R> model <- make_model("X -> Y")
R> data <- list(data_1 = data.frame(X=0:1, Y=0:1),
+ data_2 = data.frame(X=0:1, Y=1:0))
R>
R> results <-
+future.apply::future_lapply(
+ data,
+ function(d) {
+ update_model(
+ model = model,
+ data = d,
+ chains = chains,
+ refresh = 0
+ )},
+ future.seed = TRUE)
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Appendix B: Stan code

Updating is performed using a generic Stan model. The data provided to Stan is generated by
the internal function prep_stan_data(), which returns a list of objects that Stan expects to
receive. The code for the Stan model is shown below. After defining a helper function, the code
starts with a block declaring what input data is to be expected. Then, the parameters and
the transformed parameters are characterized. Then, the likelihoods and priors are provided.
At the end, a block for generated quantities is used to append a posterior distribution of
causal types to the model.

S4 class stanmodel 'simplexes' coded as follows:
functions {

row_vector col_sums(matrix X) {
row_vector[cols(X)] s;
s = rep_row_vector(1, rows(X)) * X;
return s;

}
}
data {

int<lower=1> n_params;
int<lower=1> n_paths;
int<lower=1> n_types;
int<lower=1> n_param_sets;
int<lower=1> n_nodes;
array[n_param_sets] int<lower=1> n_param_each;
int<lower=1> n_data;
int<lower=1> n_events;
int<lower=1> n_strategies;
int<lower=0, upper=1> keep_type_distribution;
vector<lower=0>[n_params] lambdas_prior;
array[n_param_sets] int<lower=1> l_starts;
array[n_param_sets] int<lower=1> l_ends;
array[n_nodes] int<lower=1> node_starts;
array[n_nodes] int<lower=1> node_ends;
array[n_strategies] int<lower=1> strategy_starts;
array[n_strategies] int<lower=1> strategy_ends;
matrix[n_params, n_types] P;
matrix[n_params, n_paths] parmap;
matrix[n_paths, n_data] map;
matrix<lower=0, upper=1>[n_events, n_data] E;
array[n_events] int<lower=0> Y;

}
parameters {

vector<lower=0>[n_params - n_param_sets] gamma;
}
transformed parameters {

vector<lower=0, upper=1>[n_params] lambdas;
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vector<lower=1>[n_param_sets] sum_gammas;
matrix[n_params, n_paths] parlam;
matrix[n_nodes, n_paths] parlam2;
vector<lower=0, upper=1>[n_paths] w_0;
vector<lower=0, upper=1>[n_data] w;
vector<lower=0, upper=1>[n_events] w_full;
vector[n_param_sets] log_sum_gammas;
// Handle cases where parameter set has only one value
for (i in 1:n_param_sets) {
if (l_starts[i] >= l_ends[i]) {

sum_gammas[i] = 1;
lambdas[l_starts[i]] = 1;

} else {
sum_gammas[i] = 1 + sum(gamma[(l_starts[i] - (i - 1)):(l_ends[i] - i)]);
lambdas[l_starts[i]:l_ends[i]] =
append_row(1, gamma[(l_starts[i] - (i - 1)):(l_ends[i] - i)]) /
sum_gammas[i];

}
}
// Mapping from parameters to data types
parlam = rep_matrix(lambdas, n_paths) .* parmap;
// Sum probability over nodes on each path
for (i in 1:n_nodes) {
parlam2[i, ] = col_sums(parlam[(node_starts[i]):(node_ends[i]), ]);

}
// Compute probability of data type on each path
for (i in 1:n_paths) {
w_0[i] = exp(sum(log(parlam2[, i])));

}
// Map to n_data columns instead of n_paths (if confounding)
w = map' * w_0;
// Extend/reduce to cover all observed data types
w_full = E * w;
// Calculate log sum gammas once for efficiency
log_sum_gammas = log(sum_gammas);

}
model {

// Dirichlet distributions
for (i in 1:n_param_sets) {
target += dirichlet_lpdf(lambdas[l_starts[i]:l_ends[i]] |

lambdas_prior[l_starts[i]:l_ends[i]]);
target += -n_param_each[i] * log_sum_gammas[i];

}
// Multinomial likelihoods (handling censoring)
for (i in 1:n_strategies) {
target += multinomial_lpmf(

Y[strategy_starts[i]:strategy_ends[i]] |
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w_full[strategy_starts[i]:strategy_ends[i]] /
sum(w_full[strategy_starts[i]:strategy_ends[i]])

);
}

}
// Option to export distribution of causal types
generated quantities {

vector[n_types] types;
if (keep_type_distribution == 1) {
for (i in 1:n_types) {

types[i] = prod(P[, i] .* lambdas + 1 - P[, i]);
}

} else {
types = rep_vector(1, n_types);

}
}
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Appendix C: Benchmarks

We present a brief summary of model updating benchmarks. Note that these benchmarks
are not generally reproducible and depend on the specifications of the hardware system used
to produce them. The first benchmark considers the effect of model complexity on updating
time. The second benchmark considers the effect of data size on updating time. We run four
parallel chains for each model with a relatively large number (4000) of iterations each time,
all replicated five times. The results of the benchmarks are presented in Table 9 and Table 10.

Table 9: Benchmarking 1

Model
Number of
parameters

Runtime
(seconds)

𝑋1 → 𝑌 6 6.33
𝑋1 → 𝑌 ; 𝑋2 → 𝑌 20 9.05
𝑋1 → 𝑌 ; 𝑋2 → 𝑌 ; 𝑋3 → 𝑌 262 100.49

Table 10: Benchmarking 2

Model Number of observations Runtime (seconds)
𝑋1 → 𝑌 10 9.02
𝑋1 → 𝑌 100 9.51
𝑋1 → 𝑌 1000 11.25
𝑋1 → 𝑌 10000 17.54

Increasing the number of parents in a model greatly increases the number of parameters and
computational time. The results suggests the computational time is convex in the number of
parents. Unless model restrictions are imposed, four parents would yield 65,536 parameters.
The rapid growth of the parameter space with increasing model complexity places limits
on feasible computability without further recourse to specialized methods for handling large
causal models. In contrast, the results suggest that computational time is concave in the size
of the data.
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