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Abstract

Fixed effects estimation, with linear controls for stratum member-
ship, is often used to estimate treatment effects when assignment propen-
sities differ across strata. In the presence of heterogeneity in treatment
effects across strata, this estimator does not target the average treat-
ment effect, however. Indeed the implied estimand can range anywhere
from the lowest to the highest stratum-level average effect. To facilitate
interpretation of results using this approach, I establish that if stratum-
level average effects are monotonic in the shares assigned to treatment,
then the fixed effects estimand lies between the average treatment effect
for the treated and the average treatment effect for the controls.
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1 Introduction

Consider a setting in which study units belong to a collection of strata. Share

pj of units in stratum j is randomly assigned—or “as-if” randomly assigned—

to receive treatment Di and outcome yi is measured for each unit i. In this case,

if pj varies across strata, treatment assignment is ignorable only conditional

upon stratum (1).

The need to condition on observables is common in both experimental and

observational research. In experimental work, it arises if researchers employ

block randomization with different probabilities within blocks or if they employ

multiple treatments with correlated probabilities (2). It can also arise if they

are interested in spillover or network effects, where the probability of exposure

to spillovers can vary across units even though the direct treatment is randomly

assigned (3). In observational work, it arises, for instance, if individuals self-

select into treatment on the basis of observable characteristics (4).

In such settings—if assignment propensities are known—there are multiple

procedures for generating unbiased estimates of average treatment effects. Ef-

fects can be estimated within each stratum and then averaged (5: section 6.1).

Unbiased estimates can also be generated using matching (6), or using treat-

ment interactions (7), propensity weighting (3), or doubly robust approaches

(8).

In practice, however, a common strategy is to use ordinary least squares

(OLS) to estimate

yi = βdi + γj[i] + ϵi, (1)

where, di is the realized treatment assignment, β represents the effect of

the treatment and γj[i] represents the fixed effect for the stratum j to which

i belongs. The key feature here is not the use of least squares but rather

the fact that intercepts are used to account for stratum effects. Including

intercepts for each stratum can be thought of as a flexible strategy for including

observable covariates, although, critically, in this form it does not allow for

effect heterogeneity across strata. The approach is common in observational

studies (see (9) for examples) and has been recommended as a simple approach
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for experimental work also (5). One recent contribution (10) replicates eight

influential economics papers to highlight how common this approach is.

If there are heterogeneous effects, however, estimates from this procedure

are prone to bias (11). Less well understood is when these biases arise and how

important they are likely to be, with contributions by (9), discussed below, a

notable exception.

In this paper I address this interpretive challenge. I identify conditions

under which the fixed effects estimand—the quantity implicitly targeted by

least squares estimation of equation 1—is ‘close’ to causal quantities of interest.

In addition I provide a proposition that establishes that if the share of

units assigned to treatment in each stratum is monotonic in stratum average

treatment effects, then the fixed effects estimand is bounded by the expected

average treatment effect for the controls and the expected average treatment

effect for the treated.

The utility of this result depends on the plausibility of monotonicity be-

tween assignments and treatment effects.

Monotonic relations are guaranteed if there are just two strata. They may

also arise however if both treatment effects and assignment propensities re-

flect some systematic feature of units. For instance, under Roy selection (12),

units are more likely to opt into treatment if they expect benefits. Indeed ex-

perimental design might deliberately select assignment probabilities to reflect

expected benefits (13). More subtle logics might also imply monotonicity.

For instance, relatively popular children—with more network connections—

might be more likely to be indirectly exposed to an antibullying treatment

that has been randomly assigned to children, yet less likely to benefit from it

(14). In experiments to study in-group cooperation that use random pairing

between individuals, individuals from larger groups have a larger propensity

to be matched with in-group partners, but larger groups might also display

different levels of in-group cooperation on average (15).

Absent monotonicity, the fixed effects estimator may be shooting at an

estimand very far from standard estimands of interest.
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2 Setup

Let N = {1, 2, . . . , n} denote a collection of units and X = {X1, X2, . . . , Xs}
a collection of strata. I let i denote an arbitrary unit in N and, when there

is no risk of ambiguity, let j indicate an arbitrary stratum Xj. Similarly I

use expressions such as
∑

j pjwj as shorthand for
∑s

j=1 pXj
wXj

. Let nj denote

the number of units, wj = nj/n the share of units, and pj ∈ (0, 1) the share

receiving treatment, in stratum j. I consider wj and pj to be known and fixed,

as might arise, for instance from blocked random assignment. Let Di denote a

random variable that indicates whether unit i is assigned to treatment. Assume

that within-stratum assignment to treatment is ignorable.

Employing the potential outcomes framework (1), let Yi(1) and Yi(0) de-

note the value on some outcome variable that unit i would take if allocated to

treatment and control conditions respectively. The causal effect of the treat-

ment on unit i is given by τi = Yi(1) − Yi(0). Letting Ej denote averages over

the set of units in stratum j, define stratum-level average treatment effects:

τj ≡ Ej[τi]. (2)

The outcome for a given unit is a random variable given by Yi = DiYi(1) +

(1 −Di)Yi(0). Then under conditions described in (1), the average treatment

effect for units in stratum j, τj, can be estimated without bias by the difference

in average outcomes in treatment and control groups. Letting lower case letters

denote realizations of random variables, we have:

τ̂j = Ej[yi|di = 1] − Ej[yi|di = 0] (3)

I consider the following (sample) estimands:

τATE ≡ EN [τi] =
∑

j wjτj∑
j wj

(4)

τATT ≡ ED

[
E{i:di=1} [τi]

]
=

∑
j pjwjτj∑
j pjwj

(5)

τATC ≡ ED

[
E{i:di=0} [τi]

]
=

∑
j(1−pj)wjτj∑
j(1−pj)wj

(6)

where EN (similarly: E{i:di=0}, E{i:di=1}) averages over sets of units, and

ED takes expectations with respect to assignments to treatment.

4



Here τATE corresponds to the average treatment effect across all units.

Quantity τATT (resp. τATC) is the expected average treatment effect on the

treated (resp. controls) with expectations taken over realizations of D. Each

of these estimands can be thought of as weighted averages of the stratum-level

treatment effects, τj. What differs is the weighting: τATT (resp. τATC) places

more weight on the treatment effect of strata with high (resp. low) propensity

of treatment.

Now consider an estimate of treatment effects resulting from using OLS to

regress the outcome on treatment and a set of indicator variables for each of

the strata. In this case, fixed effects estimation returns a weighted average of

the estimates of stratum-level treatment effects.

τ̂FE =

∑
j pj(1 − pj)wj τ̂j∑
j pj(1 − pj)wj

(7)

Derivations for this expression are provided in Theorem 5 in (16) and Equa-

tion 2 in (2), both using Frisch–Waugh–Lovell theorem. In addition I provide

a direct proof in supplementary materials (A).

Observe that the weights in Equation 7 reflect the variance in treatment

assignment within strata, not the share treated, within each stratum, and may

be increasing or decreasing in the share treated.

The estimator is unbiased for the following estimand (see equation 9 in

(11) for the two stratum case):

τFE ≡ ED(τ̂FE) =

∑
j pj(1 − pj)wjτj∑
j pj(1 − pj)wj

(8)

Here the second equality follows from the assumption that pj and wj are

fixed.

We can see from this that since least squares weights can take any value

between 0 and 1 for any stratum, depending only on the values taken by the

collection (pj), τFE can take any value between min(τj) and max(τj).

Thus, as a general matter, there is no reason to expect that the least squares

estimand is close to τATC , τATT , or τATE, and although τATE lies between τATC

and τATT , there is no guarantee that τFE will.

Example 1. For a dramatic illustration, consider a case with three equal
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sized strata (a, b, c) in which for all units Yi(0) = 0 and:

Yi(1) = 3 for all i ∈ a, pa = 1
2
−

√
3
4

Yi(1) = −3 for all i ∈ b, pb = 1
2

Yi(1) = 3 for all i ∈ c, pc = 1
2

+
√
3
4

This case has striking symmetry in treatment and control. Half the units

are in treatment and half are in control. The variation in propensities is the

same in both groups. And τATE = τATT = τATC = 1. However, τFE = −1.

The sharp divergence of τFE from the other estimands arises from the fact

that stratum b has the greatest treatment variance and so τb is weighted more

heavily by τFE than by τATE, τATT and τATC . The example highlights that

there is no general guarantee that τFE is close to quantities of interest and

that a rule of thumb based on shares in treatment and control can sometimes

seriously mislead.

The example can also be used to illustrate a more subtle point: biases

can arise even if all units have identical assignment propensities if the shares

assigned to treatment are nevertheless heterogeneous. Consider a variation

of this example induced by a “randomized saturation design” (17) in which

there is a prior randomization to determine whether share pa or share 1−pa is

assigned to treatment. Similarly for stratum c. From an ex ante perspective,

under this assignment scheme all units are assigned to treatment with prob-

ability 0.5 (assessed by combining the probability that a stratum is assigned

to a given condition times the probability that a unit is assigned to treatment

given the stratum assignment). However, under each stratum assignment, the

shares assigned to treatment vary across strata and there is systematically

varying variation in treatment assignment across the three strata. The result

is that τFE diverges from the other estimands in the same way as in the original

example even though (ex ante) assignment probabilities are now homogeneous.

3 Results

Inspection of Equations 4 - 5 and 7 suggests three cases in which τFE can

be interpreted in terms of the other estimands. First, as is already well ap-
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preciated, τFE corresponds to τATE when treatment effects or shares assigned

to treatment are constant across strata. Second τFE corresponds to τATE if

propensity variance is constant across strata, for instance if there is some p

such that for each j either pj = p or pj = 1 − p. This might arise in a partial

population design in which say, one third are treated in one group and two

thirds are treated in another. Third, one can see that τFE ≈ τATT for ‘rare’

treatments (p small) and τFE ≈ τATC for ‘common’ treatments (p large).

Proposition 1 below establishes that if the shares of units assigned to treat-

ment is monotonic in within-stratum treatment effects, then τFE lies between

τATC and τATT .

Proposition 1. If for all j, j′, pj ≥ pj′ ↔ τj ≥ τj′, or if for all j, j′,

pj ≤ pj′ ↔ τj ≥ τj′, then τFE ∈ [τATC , τATT ]

Proof. Consider the case in which pj is monotonically increasing in τj and so

τATT ≥ τATC . The proof for the case in which pj is monotonically decreasing

in τj is similar.

We have:

τFE ≤ τATT ↔
∑

j

pj(1 − pj)wj∑
j pj(1 − pj)wj

τj ≤
∑

j

pjwj∑
j pjwj

τj.

Equivalently (see supplementary materials B):

∑
j

(
pjwj∑
j pjwj

−
p2jwj∑
j p

2
jwj

)
τj ≤ 0. (9)

Note that the quantity in parenthesis in Equation 9 can be positive or

negative. More specifically, defining dj ≡ pjwj∑
j pjwj

− p2jwj∑
j p

2
jwj

and p∗ ≡
∑

j p
2
jwj∑

j pjwj
:

dj ≥ 0 ↔ pj ≤ p∗.

Exploiting monotonicity, let τ ∗ denote a value such that τj ≤ τ ∗ ↔ pj ≤ p∗.

Then, since for any constant c,
∑

j djc = 0, Equation 9 can be written:
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∑
j
dj(τj − τ ∗) ≤ 0, (10)

which we know to be true because dj ≥ 0 ↔ pj ≤ p∗ ↔ τj − τ ∗ ≤ 0.

The proof for τFE ≥ τATC proceeds similarly.

A number of considerations are of interest with regard to this result.

First, monotonicity is not a necessary condition for τFE ∈ [τATC , τATT ], as

is easily shown with counterexamples. The necessary and sufficient condition

for τFE ≤ τATT is given in Equation 9.

Second, while monotonicity ensures that τFE lies between τATT and τATC ,

there is no guarantee that τATT and τATC are close to each other or to τATE.

Indeed, all else equal, the difference between these two is greatest under mono-

tonicity. In particular, given sets (τj)
s
j=1 and (pj)

s
j=1 for s equal sized strata,

the difference τATT − τATC is maximized (resp. minimized) by a (bijective)

mapping h : {1, 2, ...s} → {1, 2, ...s} for which (τj)
s
j=1 is monotonically in-

creasing (resp. decreasing) in (ph(j))
s
j=1. More positively, whether or not τATT

and τATC are far from τATE depends on the variance of the weights used in each

case (p/
∑

j pj and (1−p)/
∑

j(1−pj), respectively). Ignoring w for simplicity,

letting ω denote a set of weights, and using the Cauchy-Schwarz inequality, the

difference between the weighted and unweighted means is bounded according

to

√(∑
j(ωj − 1

s
)τj

)2
≤
√(∑

j(ωj − 1
s
)2
)√(∑

j τ
2
j

)
. Since E[ω] = 1

s
, the

term
∑

j(ωj − 1
s
)2 corresponds to sV ar(ω) and so the bound scales with the

standard deviation of the weights.

Third, an analogous statement holds for sample statistics. Defining τ̂ATT ≡∑
j pjwj τ̂j∑
j pjwj

and τ̂ATC ≡
∑

j(1−pj)wj τ̂j∑
j(1−p̂j)wj

, we have that if pj is monotonic in the

observed within-stratum difference in means (τ̂j), then τ̂FE lies between τ̂ATC

and τ̂ATT . The proof exactly parallels that of Proposition 1.

Finally, there are fruitful connections here with findings in (9). (9) identifies

τFE as a weighted average of two quantities. When potential outcomes (and

so, effects) are linear in propensities, these correspond to τATC and τATT .

Interestingly, in case of linearity, weights can be also be calculated directly
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from the expressions in Equation 5, 6, and 8, with a weight on τATT given by:

λ =

∑
j p

2
j (1−pj)wj∑

j pj(1−pj)wj
−

∑
j pj(1−pj)wj∑
j(1−pj)wj∑

j p
2
jwj∑

j pjwj
−

∑
j pj(1−pj)wj∑
j(1−pj)wj

(11)

See supplementary materials (C) for intermediate steps.

This weight admits a substantive interpretation. Quantity
∑

j p
2
j (1−pj)wj∑

j pj(1−pj)wj
is

the variance-weighted average propensity and
∑

j pj(1−pj)wj∑
j(1−pj)wj

and
∑

j p
2
jwj∑

j pjwj
give,

respectively, the average propensity among units in control and in treatment.

The denominator is then the difference in average propensities between treat-

ment and control groups. The numerator is the difference between the variance

weighted average propensity and the average propensity in control. We then

have λ = 1 when the variance weighted mean propensity is equal to the aver-

age propensity in treatment, and 0 when it equals the average propensity in

control.

Linearity is a stronger assumption than monotonicity however, and if only

monotonicity can be defended, then the weighted quantities in (9) lose their

connection to causal estimands. However Proposition 1 provided here can still

be used.

4 Conclusion

Researchers commonly use covariate adjustment to account for known varia-

tion in treatment assignment propensities. This situation can arise in both

observational and experimental studies.

A common analysis strategy in such cases is to regress outcomes on treat-

ment using a set of controls entered additively. A maximally flexible version

of this approach, which I focus on here, is one in which researchers use fixed

effects specifications to seek to capture variation in assignment propensities.

This approach, is unfortunately not guaranteed to produce unbiased esti-

mates of the average treatment effect. Moreover, it is not well understood how

estimates generated in this manner diverge from τATE and so how to interpret
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these results.

For this reason this approach should, in general, be avoided. And for-

tunately there are multiple ways to generate estimates of average treatment

effects in this setting. Most simply, Equation 3 can be used to estimate within-

stratum effects; a weighted average of these will be unbiased for τATE. A

blocked difference in means estimator is available in (18). Other strategies

include inverse propensity weights or regression interacting treatment with

demeaned stratum dummy variables. Further strategies are described in (10).

Supplementary materials (C) provide code drawing on (19) to illustrate the

performance of some of these approaches for a variant of Example 1 above.

Despite the availability of these alternatives, using fixed effects to address

assignment heterogeneity remains common, as documented recently in (10). If

users are unable to access data and re-estimate effects correctly, rules of thumb

become useful to help interpret reported findings. A number are provided

here. First for ‘rare’ treatments the least squares estimand lies close to the

average treatment effect for the treated; for ‘common’ treatments it is close

to the treatment effect for the controls. Second, if propensity variance is

similar across strata, then the OLS estimand lies close to the ATE, even if

actual propensities diverge. Third, when a monotonicity condition is satisfied

τFE lies between the average treatment effect for the treated and the average

treatment effect for the controls. Thus when higher values on third variables

are associated both with more positive (or more negative) treatment effects

and with a higher (or lower) propensity to being assigned to treatment, τFE is

bounded by causal quantities of interest. Under the stronger assumption that

effects are linear in propensities, a new intuitive weight is provided to indicate

relative proximity to τATC and τATT .
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[9] S loczyński T. Interpreting OLS estimands when treatment effects are

heterogeneous: Smaller groups get larger weights. Review of Economics

and Statistics. 2022;104(3):501-9.
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A Derivation of τ̂FE

Proposition 2. Let y denote a vector of outcomes and X a matrix in which

the first column is the treatment assignment and columns 2 to s+1 are dummy

variables for each of s strata. Let nj, pj, n
1
j , yj, y

0
j and y1j denote, respectively,

the size of stratum j, the share of units in stratum j in treatment, the number

of units in stratum j in treatment, the average outcome of units in stratum j

and the stratum j average (observed) outcome among treated and control units

respectively.

Then, OLS regression of y on X yields:


τ̂FE

α̂1
FE
...

α̂s
FE

 = (X ′X)−1X ′y =



∑
j njpj(1−pj)(y

1
j−y0j )∑

j njpj(1−pj)

y1 − p1

∑
j njpj(1−pj)(y

1
j−y0j )∑

j njpj(1−pj)

...

ys − ps

∑
j njpj(1−pj)(y

1
j−y0j )∑

j njpj(1−pj)

 .

Proof. To establish the result, note first that the matrix X ′X can be repre-

sented as a block matrix:

X ′X =

[
n1 n1′

n1 M

]

where n1 is the number of units in treatment, n1 = [n1
1, n

1
2, . . . , n

1
s]

′ is the

number treated in each stratum, and M is a diagonal matrix reporting the

number of units in each stratum.
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From the inversion of block matrices (see Eqn 2.8.17 in (20)):

(X ′X)
−1

=

[
(n1 − n1′M−1n1)−1 −(n1 − n1′M−1n1)−1n1′M−1

−M−1n1(n1 − n1′M−1n1)−1 M−1 + M−1n1(n1 − n1′M−1n1)−1n1′M−1

]

Observing that

n1′M−1 = (p1, p2 . . . ps)

and defining

w := (n1 − n1′M−1n1)−1 =
1∑

j pjnj −
∑

j p
2
jnj

=
1∑

j njpj(1 − pj)

we have:

(X ′X)
−1

= w ·



1 −p1 −p2 · · · −ps

−p1
1

n1w
+ p21 p1p2 · · · p1ps

−p2 p2p1
1

n2w
+ p22 · · · p2ps

...
...

...
. . .

...

−ps psp1 psp2 · · · 1
nsw

+ p2s


Similarly:

X ′y =

(∑
i:di=1

yi,
∑
i∈X1

yi, . . . ,
∑
i∈Xs

yi

)

τ̂FE is then the inner product of the first row of (X ′X)−1 and X ′y:

τ̂FE = w

(∑
i:di=1

yi − p1
∑
i∈X1

yi − p2
∑
i∈X2

yi − · · · − ps
∑
i∈Xs

yi

)

To simplify, observe that
∑

i:di=1 yi =
∑

j njpjy
1
j and

∑
i∈j yi = nj(pjy

1
j +

(1 − pj)y
0
j), and so:
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τ̂FE = w

(∑
j

njpjy
1
j −

∑
j

njpj(pjy
1
j + (1 − pj)y

0
j)

)

=

∑
j njpj(1 − pj)(y

1
j − y0j)∑

j njpj(1 − pj)

In the same way:

α̂j
FE = −wpj

(∑
i:di=1

yi − p1
∑
i∈X1

yi − p2
∑
i∈X2

yi − · · · − ps
∑
i∈Xs

yi

)
− w

(
− 1

njw

)∑
i∈Xj

yi

= yj − pj τ̂FE
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B Omitted steps in proof of Proposition 1

The proof for Proposition 1 relies on an equivalence between:

∑
j

pj(1 − pj)wj∑
j pj(1 − pj)wj

τj ≤
∑

j

pjwj∑
j pjwj

τj (12)

and

∑
j

(
pjwj∑
j pjwj

−
p2jwj∑
j p

2
jwj

)
τj ≤ 0. (13)

To see this equivalence, define α =
∑

j pjwj and β =
∑

j p
2
jwj.

Condition 12 can then be written:

∑
j
pjwjτj

1 − pj
α− β

≤
∑
j

pjwjτj
1

α

↔∑
j
pjwjτj

(
1 − pj
α− β

− 1

α

)
≤ 0

↔∑
j
pjwjτj

(
β − αpj
(α− β)α

)
≤ 0

↔∑
j
pjwjτj

(
1

α
− pj

β

)
≤ 0

Where the last step results from multiplying across by α−β
β

> 0.

Resubstituting for α and β yields the result.
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C Derivation of Equation 11

In the linear case, monotonicity is satisfied and we can therefore write:

τFE = λτATT + (1 − λ)τATC

Substituting from Equations 5, 6, and 8:∑
j pj(1 − pj)wjτj∑
j pj(1 − pj)wj

= λ

∑
j pjwjτj∑
j pjwj

+ (1 − λ)

∑
j(1 − pj)wjτj∑
j(1 − pj)wj

.

With treatment effects linear in pj we have for some β:

∑
j pj(1 − pj)wjβpj∑

j pj(1 − pj)wj

= λ

∑
j pjwjβpj∑

j pjwj

+ (1 − λ)

∑
j(1 − pj)wjβpj∑

j(1 − pj)wj

Dividing across by β, and gathering terms gives:∑
j p

2
j(1 − pj)wj∑

j pj(1 − pj)wj

= λ

∑
j p

2
jwj∑

j pjwj

+ (1 − λ)

∑
j pj(1 − pj)wj∑
j(1 − pj)wj

Solving for λ then yields:

λ =

∑
j p

2
j (1−pj)wj∑

j pj(1−pj)wj
−

∑
j pj(1−pj)wj∑
j(1−pj)wj∑

j p
2
jwj∑

j pjwj
−

∑
j pj(1−pj)wj∑
j(1−pj)wj
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D Code illustration

There are many approaches that can be used to generate unbiased estimates in

the presence of heterogeneous but known propensities across strata. I illustrate

by using the R package DeclareDesign to simulate data from a version of

Example 1 and show the performance of five estimation strategies: pooled

OLS, OLS with stratum dummies (fixed effects), Inverse Propensity Weighting

(IPW), OLS but with interactions between treatment and demeaned stratum

dummies, following (7), and blocked differences in means. This code draws

from material in (19).

Code to compare estimators for Example 1

library(DeclareDesign)

prob <- c(.067, .5, .933)

design <-

declare_model(

block = add_level(N = 3, p = prob, tau = c(3, -3, 3)),

unit = add_level(N = 1000, Y0 = 10*(p + rnorm(N)), Y1 = Y0 + tau)) +

declare_inquiry(ATE = mean(Y1 - Y0)) +

declare_assignment(Z = block_ra(blocks = block, block_prob = prob)) +

declare_measurement(

ipw = 1/(Z*p + (1-Z)*(1-p)),

Y = Z*Y1 + (1-Z)*Y0) +

declare_estimator(Y ~ Z, .method = lm_robust,

label = "Pooled") +

declare_estimator(Y ~ Z + block, .method = lm_robust,

label = "Fixed effects") +

declare_estimator(Y ~ Z, blocks = block, .method = difference_in_means,

label = "Blocked differences in means") +

declare_estimator(Y ~ Z, covariates = ~ block, .method = lm_lin,

label = "Interactions (Lin approach)") +

declare_estimator(Y ~ Z, .method = lm_robust, weight = ipw,

label = "Inverse propensity weights")

simulate_design(design) |>

group_by(estimator) |>

summarize(

SE_bias = mean(std.error - sd(estimate)),

ATE_bias = mean(estimate - estimand) )

The code is shown in Box D. Table 1 shows the results, highlighting the

poor performance of both the pooled approach and the fixed effects approach
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Table 1: Performance of five strategies to estimate average treatment effects
Estimator Bias of standard errors Bias of estimates
Pooled 0.02 5
Fixed Effects 0.00 -2
Inverse propensity weights 0.04 0
Interactions (Lin approach) 0.00 0
Blocked differences in means 0.00 0

in this setting. IPW, the interaction model, and blocked differences in means

are all unbiased, though they differ in the performance of standard errors—

assessed here as the difference between the estimated average standard error

and the estimated standard deviation of the sampling distribution of estimates

under each estimator.
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